
Leveraging Drupal®

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox guides are crafted to make learning programming languages and technologies easier than you think. Written by
programmers for programmers, they provide a structured, tutorial format that will guide you through all the techniques involved.

Recommended
Computer Book

Categories

Internet

Web Page Design

ISBN: 978-0-470-41087-5

As an open source, community-based content management system
and web site application development framework, Drupal allows
you to create interactive, media-based, database-driven web sites
that become a part of everyday activities and communications.
This unique book is the first of its kind to tackle the challenging
task of leveraging Drupal to get a site done right and make that site
work for you, based on industry-wide software development best
practices.

Within these pages, you will gain insight into how to work with any
release of Drupal, approach your project, establish a development
environment, plan for deployment, and avoid pitfalls along the way.
A real-world example of a web site application based on Drupal—an
online Literary Workshop—is used throughout the book, and it walks
you through the entire development lifecycle. You’ll learn how to
bring your web site into the exciting Drupal mainstream, customize
Drupal for your specific needs, and even make “non-Drupal” looking
sites. With this hands-on guide, you’ll discover how to use Drupal to
efficiently publish, manage, and organize a wide variety of content
on your web site.

What you will learn from this book
● Best practices to optimize the way you approach

development projects
● Methods for setting up a development environment

using version control and issue tracking tools
● How the Drupal theming system works and how it

separates content from presentation and style
● Techniques for upgrading and deploying the online

Literary Workshop
● The future of Drupal and how it might be developed

and used

Who this book is for
This book is for Drupal users of all levels of expertise
who are looking to put together a sophisticated web
application.

Leveraging D
rupal

®

Kane

spine=.96"

Updates, source code, and Wrox technical support at www.wrox.com

Leveraging
Drupal

®

Getting Your Site Done Right

Victor Kane

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

spine=.96"

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Leveraging Drupal®

Introduction . xxiii

Part I Launching Your Website as a Software Project
Chapter 1: Keeping It Simple . 3
Chapter 2: Taking Baby Steps. 17
Chapter 3: Getting Organized . 53
Chapter 4: Getting up to Speed . 87

Part II Getting Your 5.x Site Up-To-Date
Chapter 5: Finishing up the Elaboration Phase . 109
Chapter 6: Pushing the Envelope . 129
Chapter 7: Becoming an Expert Drupal Themer . 155

Part III Upgrading Your Drupal Site
Chapter 8: Upgrading to Drupal 6 . 187
Chapter 9: Upgrading to Drupal 6 Revisited . 213

Part IV Getting the Most out of Drupal 6.x
Chapter 10: Installing and Using Drupal 6 Fresh out of the Box 239
Chapter 11: Full Swing Agile Approach to Drupal Development 279
Chapter 12: The jQuery Chapter. 323

Part V Drupal 7 and the Road Ahead
Chapter 13: From Drupal 6 to Drupal 7 and Beyond . 365
Chapter 14: Deploying your Application as a Drupal Installation Profile. 385
Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative 411
Index . 431

Leveraging Drupal®

Leveraging Drupal®

Getting Your Site Done Right

Victor Kane

Wiley Publishing, Inc.

Leveraging Drupal®: Getting Your Site Done Right
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-41087-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data
Kane, Victor, 1946-

Leveraging Drupal : getting your site done right / Victor Kane.
p. cm.

Includes index.
ISBN 978-0-470-41087-5 (paper/website)
1. Drupal (Computer file) 2. Web sites — Design — Computer programs. 3. Web site development. I. Title.
TK5105.8885.D78K36 2009
006.7′6 — dc22

2008049818

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the permission Department, John Wiley Publishing, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Microsoft and SharePoint are registered trademarks of
Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

To my parents, John and Helena Kane, who made huge sacrifices in order to guarantee their children’s educations.
To my son, Guillermo, who has taught me so many things. To my loving life partner, Elena, who shares with me
life, love, and struggle, and who has taught me the meaning of determination; and to all our sisters and brothers.

About the Author
Victor Kane is a process engineer and system architect who focuses on mentoring services and Agile
approaches to web application development. For the past several years, Victor has been building website
applications and helping others to do so using the Drupal CMS Framework, with an emphasis on build-
ing a cookbook of proven recipes capable of meeting modern requirements, based on best practices and
a test-driven approach to application construction.

Victor has been an active participant in the Drupal community, with its forums, locally based Drupal
groups, and Drupal camps and conferences, and is a proud ‘‘graduate’’ of the Drupal Dojo knowledge
sharing group originally founded by Josh Koenig on http://groups.drupal.org. Since then he has
frequently shared his experience and insights on his personal blog, http://awebfactory.com.ar.

Credits
Executive Editor
Carol Long

Development Editor
Maureen Spears

Technical Editor
Joel Farris
Dan Hakimzadah
Benjamin Melancon

Production Editor
Rebecca Coleman

Copy Editor
Cate Caffrey

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Andrew Phillips, Windhaven Press

Indexer
Jack Lewis

Acknowledgments

The Drupal Community at http://drupal.org, who have managed to bring together a hugely talented
and motivated network of talent, and who owe their success to their ability to begin to transcend national
boundaries, must be acknowledged in first place.

In second place, the unknown and unwitting poster to the forums and handbooks of drupal.org, having
provided the answers in the nick of time on countless occasions.

I must acknowledge also the Drupal Dojo group (http://groups.drupal.org/drupal-dojo), an incred-
ibly selfless ‘‘share the knowledge’’ self-teaching group that started operations in January 2007 and is
now getting ready to launch Drupal Dojo 2.0.

Also, I thank the kind people at Wiley Publishing including Carol Long, who helped me make this book
a reality, and Maureen Spears, who was my lifeline. In addition, I‘d like to convey a word of thanks to the
technical editors — Joel Farris, Dan Hakimzadah, and Benjamin Melancon as well as Robert Douglass of
Acquia — who all were instrumental in shaping the code and text; as well as Miguel Martinez, of Buenos
Aires, who took my photograph for the cover.

All who post. All who test. All who post issues in the Bazaar.

Contents

Introduction xxiii

Part I: Launching Your Website as a Software Project

Chapter 1: Keeping It Simple 3

Getting with the ‘‘Program’’ 4
Starting with a Map for Business Vision and Scope 7
Who’s Going to Use the Site? 8
What Are They Going to Use It For? 9
What Needs to Be Done So They Can Do That? 10
When Should You Do That? 12
What Should It Look Like? 13
Making Sure You’re Getting What You Really Want 13
Turning Over the Helm 14

Information Architecture and an Agile Approach for the Rest of Us 15
The Example Used throughout This Book 15
Summary 16

Chapter 2: Taking Baby Steps 17

Creating an Initial Environment 18
Installing Drupal as a ‘‘One-Click’’ Pre-Installed Script 19
Installing Drupal Right 22

Whipping up the Initial Prototype 31
Implementing Roles 31
Implementing the Business Objects 33
Putting the First Role to Work (Initial Basic CMS Workflow...) 47

Summary 50

Chapter 3: Getting Organized 53

Reviewing the Initial Environment 53
Housekeeping the SVN Repository and Trac Instance 55
Main Directory Structure for Drupal 56
Main Directory Structure for the Repository 61

Contents

Initial Import of the Codebase into the Repository 62
Getting the Test Site up and Running 63

Building on Your Initial Prototype 69
Creating the literary_piece Content Type 70
Enabling Comments for the literary_piece Content Type 71
Creating Some Magazines and Books 73
Setting up Some Forums 78
Setting up Blogs 79
Completing the Primary Menu 80
Committing to the Repository and Tagging the Initial Prototype 81
Deploying to the Test Site 82

Getting Initial Feedback from the Client 84
Summary 85

Chapter 4: Getting up to Speed 87

Finishing the User Stories with the Client 87
Planning the Project 89

Doing It on the Dining Room Table 89
Doing It with Trac 90
Doing It 95
Committing, Deploying to Test, Testing, Tracking 99

Working on the Architectural Baseline 101
Getting the Team Organized and with the Program 103

Whom Do You Need? 103
‘‘Who You Gonna Call?’’ 104

Elaboration Phase Cleanup 104
Summary 105

Part II: Getting Your 5.x Site Up-To-Date

Chapter 5: Finishing up the Elaboration Phase 109

Creating an Initial Environment 109
How Can I Easily Update the Drupal Release? 110
How Can I Update Modules Easily and Cleanly? 111

Whipping up the Initial Prototype 117
A Workshop Leader Can Manage Affinity Groups 119
A Workshop Leader Can Broadcast Messages to Members 125

What’s Left? 126
Working on the Architectural Baseline 126
Summary 127

xvi

Contents

Chapter 6: Pushing the Envelope 129

You’ve Got Mail! 129
Using Your Own dev Affinity Group 130
Rolling Your Own Document Case and Index 136

Implementing the Document Case 137
Views-Sorting Tweak 140

Now, Where Were We? 141
Creating the Menus and Navigation Blocks 144

Browsing and Filtering Views of Literary Pieces 145
Example: The Beta Milestone 146
Allowing Filtered HTML Formatting in the Text Area 149
The Tagadelic Module 149
Creating the View Itself 150
Using Exposed Filters with the View 152
Using Categories and Tag Clouds for Project Management 153

Summary 154

Chapter 7: Becoming an Expert Drupal Themer 155

On to Theming 155
Dividing and Conquering Complexity 156
Dynamic Content 160
Specifying Structure 161
Specifying Style 173
Synching Your Work with the Repository and the Test Site 174
Weak and Strong Points in Separation of Concerns with Drupal 178

Standing on the Shoulders of Giants — Reusing the Zen Theme 178
Creating Subthemes 179
Applying the Subtheme to the Quotation Block 181

Summary 183

Part III: Upgrading Your Drupal Site

Chapter 8: Upgrading to Drupal 6 187

Recommended Reading 187
Upgrading — The Basic Process 188
Step 1: Shifting Everything over to a Test Site 188

Installing Using a Complete Backup from Your Hosting 189
Quick and Dirty on the Command Line 189

Step 2: Updating to the Latest Drupal 5.x Version Available 191

xvii

Contents

Updating to 5.x Steps 191
The Sad State of My Modules 194
Doing What I Did 195

Step 3: Testing Everything in the Upgraded 5.x Version 199
Step 4: Making a Module Inventory 200
Step 5: Switching to the Default Drupal Theme 201
Step 6: Disabling All Contributed Modules 202
Step 7: Updating the Drupal Core 202
Step 8a: Enabling the Modules 205
Step 8b: Upgrading the Theme 206
Step 9: Re-running All Site Acceptance Tests 211
Step 10: Deploying 211
Summary 211

Chapter 9: Upgrading to Drupal 6 Revisited 213

Shifting Everything over to a Test Site 214
Update Everything to the Latest Drupal 5.x Version 214
Module Inventory for the On-Line Literary Workshop 215
Preparatory Steps before the Point of No Return 216
Physically Replacing the Drupal 5 Contributed Modules 216
Update Drupal Core and Run the Update Script 217
Solving Problems with Organic Groups 218

Escaped PHP Showing up in My Groups View 219
Group Home Pages No Longer Showing the Group’s Posts 222

Getting the Old Views Back 226
Installing the Advanced Help Module 227
Upgrading Your Zen Theme to Drupal 6.x 229
The All-New Devel Module 231
Committing and Deploying to the Test Site 234
Summary 235

Part IV: Getting the Most out of Drupal 6.x

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box 239

Step 1: Installing Drupal — Easier Than Ever Before 240
Downloading Drupal 240
Unzipping and Preparing Files for Upload 240

xviii

Contents

Uploading Files 240
Creating the Database and User for the Drupal Installation 241
Running the Drupal Install Wizard 241

Step 2: Designing and Building the Architecture 244
Application Scope and Domain 244
Creating Roles and Users 245
Installing and Enabling Modules 247
Making the Site Bilingual 248

Step 3: Creating the Business Objects 252
Step 4: Creating the Workflows 256

Implementing the Registration Workflow 257
Implementing the Client’s Workflow 261
Implementing the Translator Team Leader’s Workflow 268
Implementing the Translator’s Workflow 272

Summary 278

Chapter 11: Full Swing Agile Approach to Drupal Development 279

Honing the Project Tools 280
Adding an Acceptance Test Node 280
Make a View to List User Stories 281
Making the User List Available 283
Creating a Block Menu to Easily Access the New View 288

Implementing the User Stories 289
Workshop Member: Starting an Affinity Group with Its Own Forums 289
A Publisher Can Browse Public Content 292
A Publisher Can Select Content for Inclusion in a Publication 298
A Publisher Can Manage a Publication 298
A Publisher Can Broadcast a Call for Pieces to be Submitted for a Publication 301
Initial Theming 303

On-Line Blog Functionality 316
Implementing Service Links 318
Implementing the Author Info Block for Individual Blogs 319
Implementing Recent Posts Block 320
Implementing the Blogroll 320

Summary 321

Chapter 12: The jQuery Chapter 323

Anatomy of a Rich Internet Application Framework 323
The Basics 323
Getting at the DOM with CSS 325
Getting at the DOM with JavaScript 327

xix

Contents

Anatomy of jQuery and Its Plug-Ins 330
jQuery Itself 330
Our onload() Example Implemented with jQuery 331
A Theming Example 332
Plug-Ins 335

Drupal 5.x Uses of jQuery and Other JavaScript Libraries 336
jstools 336
Prototype and script.aculo.us 337
Drupal 5.x UI 338
The jQuery Update Module 338

Advanced Drupal 5.x Examples 339
Reusing the Collapsible Widget 339
Dependent Autocomplete Fields 342
Making Use of Hierarchical Select (Drupal 5.x) 345

Validate, Validate, Validate! 347
Drupal 5.x Thread 347
Drupal 6 Thread: An Ajax-Validated Application Form 349

Drupal 6.x jQuery Breakthrough 354
An Example jQuery Ajax Alarm Module for Drupal 6.x 355

Summary 362

Part V: Drupal 7 and the Road Ahead

Chapter 13: From Drupal 6 to Drupal 7 and Beyond 365

What’s Changed in Drupal 6? 365
Killing the Webmaster 367
Understanding the Drupal Blueprint from Drupal 7 On 368
Making the Historic Decision to Postpone the Drupal 7 Code Freeze 369
Listing the Drupal 7 Features 370
Drupal 7 Architectural Style 371

Drupal 7 Database API 371
Going PHP 5 372
Considering Usability Concerns, Usability Sprints 372

Projecting Drupal 7 Contributed Module Battle Plans 376
Installing Drupal 7 377
Developing a Minimalist On-Line Literary Workshop in Drupal 7 378
Creating Literary Pieces 381
Summary 383

xx

Contents

Chapter 14: Deploying your Application as a Drupal Installation Profile 385

Leveraging the Advanced Help Module 385
Analyzing the Components of the Views 2 Help System 386
Planning the On-Line Literary Workshop Help System 387
Implementing the On-Line Literary Workshop Help System 388

Installing Profiles! Kill the Webmaster! 392
What Are Installation Profiles? 392
Analyzing Drupalbin: An Example Installation Profile 392

Writing the On-Line Literary Workshop Installation Profile 395
Starting with a Clean Drupal Installation Tarball 395
Copying in the Modules and the Theme 396
Abstracting out the Views into the litworkshop Module 397
Preparing the ./profile Directory 399
Caveats 410
Creating the Drupal Installation Tarball Itself 410

Summary 410

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative 411

Trying out Acquia Drupal 412
Step 1: Creating a Subscription 412
Step 2: Setting up Acquia Drupal 413
Step 3: Registering Your Website with the Acquia Network 417
Step 4: Getting Support 421

Exploring the New Acquia Drupal Website Installation 421
Installing Updates 423
Introducing the Acquia Marina Theme 426
Checking out Mollom 427
Using the Acquia Partner Program 429
Summary 430

Index 431

xxi

I n t roduc t ion

Drupal is an Open Source, community-based Content Management System (CMS) and Website Applica-
tion Development Framework that allows individuals, organizations, businesses, government agencies,
and social classes to create interactive, media-based database-driven websites where they can carry out a
significant portion of their activities.

What does this mean for you?

Open Source — Not only is Drupal a software product readily available free of charge, but it
is also licensed under the GPL license. This means, among other things, that its source code is
completely open and readily accessible to all. It also means that all upgrades are available free of
charge.

For more on the GPL license, see www.gnu.org/licenses/gpl-faq.html
#WhatDoesGPLStandFor. For an interesting discussion of how business can make use
of GPL-licensed software without having to publish the way they actually put Drupal to
use, see http://jeff.viapositiva.net/archives/2006/02/drupal_and_the_gpl_
as_i_understa.html.

Community-Based — Not all Open Source software is community-based. Some large corpora-
tions release a portion of their code under a GPL license, but the user community cannot partic-
ipate in the production of the code. It is important to understand that because Drupal is actually
produced by a huge developer base, with a publicly accessible and tremendously active issue
queue, Drupal enjoys a considerable gain in the quality of its software.

Content Management System (CMS) — Once installed and configured, Drupal allows an
authenticated user granted the appropriate permissions to create, edit, manage, and publish
content without any more specialized knowledge than being able to use a modern word
processor. And it allows graphic web designers and stylists to alter the look and feel of that
content.

Website Application Development Framework — Drupal goes way beyond being only a CMS:
Off the shelf, it allows for the publishing of dynamic content capable of changing and adapting to
different contexts, conditions, or kinds of users. It allows developers to implement web applica-
tions based on business objects and listings generated by flexible, real-time queries generated on
the fly. And it allows developers to integrate the system with countless external web applications
and Web Services in a thoroughly modular fashion.

Individuals, Organizations, Businesses, Government Agencies, and Social Classes — In a
word, you. You can use Drupal to create a modern, interactive website that can become part and
parcel of your day-to-day activities and communications.

Introduction

But this book is not just about Drupal. It is about leveraging Drupal. It explains the best possible set of
approaches toward making Drupal work for you to get your site done right and, as such, views Drupal,
together with a series of additional methods and best practices, as a way of getting things done.

By working with this book, you will gain insight into how to work with any of the most recent Dru-
pal releases, and you will learn how to set up shop, how to approach your project using an Agile and
test-driven approach to software development, how to plan for deployment, and how to avoid pitfalls
along the way.

Whom This Book Is For
This is a book you have to read. This is a book you have to work through, because it is so closely pegged
to actually working with Drupal that an all-inclusive index would be longer than the book itself.

It is my earnest hope that the contents of this book may be shared with many kinds of Drupal users.
But it must be said that this is neither a book on Drupal programming dedicated only to highly trained
technical staff, on the one hand, nor is it a book designed to walk the casual Drupal end-user through its
many features — although it might benefit both.

However, the problem this book attempts to solve — and in this sense, it is perhaps unique — is the sad
but true fact that the development of any website today involves the ability to master, with at least a prac-
tical level of solvency, a huge number of disciplines. You need to be, in a certain sense, the Renaissance
kind of person capable of either dealing with or (and this is extremely important) delegating, when you
cannot, an extremely wide range of skills. This means that you are very often in the position of needing
to get up to speed on a wide variety of issues. This book attempts to bring them into a single, convenient
space.

In short, this is a book designed for people who, given a set of website requirements and a commu-
nity of users who need to use that website, have to learn how to fashion Drupal to their needs, how to
domesticate Drupal — in short, how to get it done.

And how to get it done right: This book is designed for those who are convinced that in order to suc-
cessfully achieve a nontrivial purpose, it is necessary to stand on the shoulders of giants and adopt an
industry’s set of best practices in order to avoid a host of common pitfalls that can cost a great deal of
time and money, and even cause your project to fail entirely.

So, taking into account that the book is directed at an extremely wide range of skill sets, you definitely
form part of the audience of this book if you are:

A website developer interested in looking over the shoulder of experienced Drupal developers
and learning all the steps and how-tos of all the processes that they need to master in order to
efficiently harness Drupal

A website developer interested in learning how to set up a professional Drupal shop, including
practical examples of best practices in business modeling and requirements capturing, iterative
and incremental development, testing and deployment, and maintenance in regard to the Drupal
website development life cycle

xxiv

Introduction

Anyone interested in finding out the shortest path between what his or her clients need, on the
one hand, and how Drupal can be used to get there

An IT professional with experience in developing website applications using other frameworks
and technologies, who is now interested in either using Drupal for a specific project, or in evalu-
ating it

A web designer who is interested in finding out how to convert XHTML/CSS designs into work-
ing Drupal sites

A project manager who needs to understand the dimensioning of what is entailed in various
kinds of website development using Drupal

Untrained end-users who are having a Drupal-based site delivered to them and need to school
themselves realistically in terms of what it means to own and house-train a modern website

Anyone curious about how anything Drupal actually gets done

What This Book Covers
This book attempts to be Drupal release-agnostic, and a large part of what is covered is applicable to
website development with Drupal whether you are using Drupal 5.x, 6.x, or even 7.x and later.

And most importantly, it also focuses on a wide range of disciplines, tools, and best practices you need
in order to optimize the way you approach development projects built on this CMS and framework.

How This Book Is Structured
The book is structured around a real-world example of a website application based on Drupal, the
On-Line Literary Workshop. As such, its organization mirrors the development life cycle as a whole,
with the exception of Chapter 10, which covers the development of an entire real-world application from
start to finish.

Part I: Launching Your Website as a Software Project

Chapter 1 — The first chapter takes you from the business vision and scoping of the project
to the laying out of an Agile approach tailored to Drupal website application development
based on an iterative and incremental approach with frequent builds and prototyping, ori-
ented toward a maximum of client participation.

Chapters 2 and 3 — The second and third chapters deal with gradually setting up a com-
plete, no-nonsense development environment — including development, test, and pro-
duction sites — using version control and issue-tracking tools. As you work through these
chapters, you analyze, design, and implement your first cut of business objects while work-
ing with Drupal itself to get an initial prototype up and running.

Chapter 4 — The fourth chapter is a fully fledged planning sprint, starting with the
refinement of the project user stories, their final assignment to phases and iterations, and
the test-driven implementation of the first batch. The architectural baseline, concerned

xxv

Introduction

with mapping Drupal modules and architecture to the design and implementation of the
project’s functionality, is completed.

Part II: Getting Your 5.x Site Up-To-Date

Chapters 5 and 6 — The fifth and sixth chapters cover various implementation sprints. You
use development documentation and project tracking to extend a project within the project
and find it a home as part of the website itself, which becomes self-documenting.

Chapter 7 — The seventh chapter covers more user story implementation, but also concen-
trates on explaining how the Drupal theming system works and how it cleanly separates
content from presentation and styling. A great deal of hands-on practice is included, as
well as a concrete recommendation and demonstration for using the Zen theme as a sys-
tematic starting point for all your Drupal theming.

Part III: Upgrading Your Drupal Site

Chapter 8 — The eighth chapter is an aside on upgrading from Drupal 5.x to 6.x, taking my
blog, http://awebfactory.com.ar, as a real-world example.

Chapter 9 — The ninth chapter is a hands-on, step-by-step approach to upgrading the
On-Line Literary Workshop to Drupal 6.x, including the upgrading of all content and
modules, including CCK, Views, Organic Groups, Pathauto, Private Messaging, and more.

Part IV: Getting the Most out of Drupal 6.x

Chapter 10 — This chapter covers the development of an entire real-world application
from start to finish.

Chapter 11 — Chapter 11 takes the development of the On-Line Literary Workshop a great
leap forward with the implementation of another round of user stories and also includes a
section on how to turn a standard XHTML/CSS template into a Drupal theme for use with
your project.

Chapter 12 — This is the jQuery chapter. Enough said.

Part V: Drupal 7 and the Road Ahead

Chapter 13 — This chapter deals with the Drupal 7 release, its roadmap and the philosophy
behind it, and its feature list and architectural style; it also covers its installation and use.

Chapter 14 — This chapter completes the On-Line Literary Workshop deployment,
explaining how to use the Advanced Help module to provide customized context-sensitive
help and how to turn your whole project into a reusable installation profile anyone in the
community can download and use.

Chapter 15 — Looking ahead, and with the objective of exploring as many alternatives as
possible as a basis for serious Drupal development and use, Acquia Drupal is explained
and explored in Chapter 15 as an Enterprise-ready commercial services-based distri-
bution of Drupal. This chapter brings you the possibility of starting out with enhanced
off-the-shelf functionality, monitoring, and support.

xxvi

Introduction

What You Need to Use This Book
At a minimum, you should have access to at least one working Drupal website that you have installed
yourself, or else have had installed, with all administration permissions granted. That pretty well defines
the hardware and throughput characteristics also.

In order to do serious development, a workable setup would include the following:

A development server (this could very well be a laptop) capable of running Drupal, on any mod-
ern operating system. Your favorite version control system (CVS, SVN, Git, etc.) client should be
installed also.

A development environment (may be the same laptop or computer acting as your development
server), including at least a file manager and a simple text editor (or maybe an IDE develop-
ment environment) in order to edit PHP, CSS, and other kinds of text files; a client for whatever
version control system you are using (CVS, SVN, Git, etc.); and a dependable and decently fast
Internet connection that will allow you to connect with your test and production sites and your
version control system. Ideally, you should have an ssh client (putty in Windows, ssh in Linux
or OS X), along with at least some form of graphic editing application (such as Gimp or Adobe
Photoshop or Fireworks).

A test site running Drupal to which you ideally have both FTP or SFTP as well as command-line
access via ssh. It should be capable of running a version control client.

A production site, of course, if this is a real-world project, with at least similar characteristics to
the test site.

A version control repository either installed on one of your own hosting servers, or else a spe-
cialized version control repository account.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.

We show filenames, URLs, and code within the text like so: persistence.properties.

xxvii

Introduction

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-41087-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

xxviii

Introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxix

Part I

Launching Your Website as a
Software Project

Chapter 1: Keeping It Simple

Chapter 2: Taking Baby Steps

Chapter 3: Getting Organized

Chapter 4: Getting Up to Speed

Keeping It Simple

‘‘Keep It Simple’’ is really a synonym for ‘‘Get a Grip.’’

If you are reading this book, you probably have some degree of responsibility in getting a website
application up and running. If you are reading this chapter and you are searching for a series of
steps you can actually assimilate and follow toward fulfilling that goal, then you are in the right
place.

First of all, in a software project (and because of its complexity, that is what a website application
is), you are either controlled by circumstances or you succeed — but only if you can maintain your
grip on things. That’s only if, after receiving all the advice, you are able to fashion your own means
of zooming into detail, return to the overview, keep it going, and know at all times where your
bookmarks are . . .and if you can pilot the process of each layer making up the project, on every
front: the purpose, the design, the usability, the navigation, the function, the data, the push and pull
and flow of actions and results, the emission and reception of messages, the completion of tasks, the
updating, the classification, and relation of content.

Which is to say, if you keep it simple and keep it all in view, or at least know where to look for
it, then you can marshal your own approach to truly leveraging a powerful, open-ranging, and
dynamically productive framework such as Drupal, the ‘‘Community Plumbing’’ Content Manage-
ment System framework middleware powerhouse, featuring:

Significant off-the-shelf functionality

Tremendous extensibility through nearly 3,500 contributed modules

Based on one of the most active Open Source communities in existence

Drupal is all of these things.

Add to the mix that Drupal itself is evolving at a fairly brisk pace, as you’ll see in later chapters, and
you definitely need to come to Drupal with your own approach.

Chapter 1: Keeping It Simple

Because you are using Drupal for world domination (a favorite geek metaphor among Drupaleros),
then you had better have a program. And you had better make sure that everyone involved gets on that
program and stays there.

Getting with the “Program”
The ‘‘program’’ means that you must start out with a clear idea of how your client defends her interests
with the website application in the works. In the program, keeping it simple does not mean splitting it
apart and losing the richness of vision, nor does it mean oversimplifying.

This chapter lays out a method that you follow throughout the rest of the book. Then, you can either
adopt it lock-stock-and-barrel or roll your own. But we definitely recommend following some kind of
Agile approach and have developed a lean, mean methodology checklist. We find that this means, at a
bare minimum, maintaining a policy for:

Vision and Scope — The business vision and scope

Visitors and Users — Who’s going to use the website?

User Stories — Narratives telling us what the users are going to use the website for

Analysis and Design — What needs to be done so they can do that?

Planning and Risk Management — When should you do that?

Design and Usability — What should it look like?

Tracking and Testing — Making sure you’re getting what you really want

Technology Transfer and Deployment — Turning over the helm to those who will be managing
the website application each and every day

Figure 1-1 shows a basic main process workflow for this book’s example project. The workflow is strongly
influenced by Mike Cohn’s book User Stories Applied (http://amazon.com/User-Stories-Applied-
Development-Addison-Wesley/dp/0321205685).

The Perl programming language, in common with Drupal, has been one of the major Open Source success
stories of all time, answering a burning need in an intelligent and synthetic way, backed by an extremely
active community led by very smart people. And, like Drupal, given a problem, it provides an enormous
number of alternatives offering themselves as solutions. ‘‘There’s more than one way to do it’’ has always
been their slogan, and the same holds true with Drupal: there is always more than one way to do it. So, of
course, you can substitute your own process workflow and find your own solutions along the way. The
important thing is to recognize that the development of a website application is a complex process. To get
it done right and to leverage a powerful, dynamic, and productivity-enhancing framework like Drupal,
you need to develop your own independent approach and method as you gain experience yourself. The
method you’ll use throughout this book is a ‘‘starter set’’ you will adapt and tailor to your own needs, as
you develop the Literary Workshop community website.

In a nutshell, the main process workflow makes the first task the identification of the customer and,
by extension, the business vision and scope of the project as well as the complete list of stakeholders
involved. Then comes the identification of the roles — the different kinds of users who will use the site.
For each role, you write a series of user stories, identifying all the possible interactions the role will have

4

Chapter 1: Keeping It Simple

with the website application. Doing it this way (asking who will use the site, and, for each of the roles,
what they are going to do when they interact with it) guarantees that you can cover all the functionality
required and come up with a complete list of user stories.

Start project

Main
Process
Flow

Write User
Stories

Plan the
Release Estimate

Velocity

Estimate
Use Stories

Prioritize
Use Stories Allocate

Stories to
Iterations

Identify
Customer

Identify
Roles

Do
Iterations

Continuous
Build

Figure 1-1

At this point, you have all your user stories, perhaps written on 3×5 cards and spread out on a table in
front of you, or on a magnetic board, or taped up to the wall, or whatever. So you can do the planning.
This involves making an initial estimate for each user story, taking advantage of the fact that each user
story is a semi-autonomous chunk of functionality that can be dealt with independently. Then, you
create a way of putting the estimates in context on the basis of the velocity of the team. (Is this our first
time? Any extra-special technical areas of difficulty, like dealing with a text messaging gateway, or with
specialized web services?)

Next, you are ready to prioritize the user stories. If they are indeed 3×5 cards, this means unshuffling
the deck and putting them in order. The two most significant criteria for this should be: which ones does
the client think are the most essential, and which ones need to be tackled first because they involve some
kind of risk that needs to be mitigated at as early a stage as possible.

This process dovetails into the next important planning task, which is allocating the stories to iterations.
You want to have several iterations, at least four to six for a medium site, even more for a large site,
following the Agile principle of ‘‘frequent releases.’’ One reason for this is so that the client, who should
be considered part of the development team, can give really effective feedback in time for the architecture
of the site not to be adversely affected by any ‘‘surprises’’ that may crop up: If implementation is straying
far from the client expectations of what the website is supposed to actually do, you want to find out
about that sooner rather than later. Another is so that work can be expressed as much as possible using
the semantics of the solution domain, rather than the problem domain — which means that people can
think much more clearly when something concrete is up and running, rather than being forced to work
in the abstract.

5

Chapter 1: Keeping It Simple

Discuss
Stories

Write
Acceptance

Test

Disaggregate
Stories into

Tasks

Distribute
Responsibility

for Tasks

Estimate
Tasks

Continuous
Build

Run
Acceptance

Tests

Raise Issues

Do Tasks

Iteration
Process
Flow

Figure 1-2

So now, you have planned your iterations, and you have on the table (and hopefully on the wall), or else
entered into your favorite issue tracking system, essentially four to six piles of no more than five user
stories (more iterations and more user stories per iteration if it is a bigger website, also depending on
estimated team velocity).

Basically, you want to grab the first pile (the first iteration) and implement it. Now, for each planned iter-
ation, or phase (sometimes people group iterations in phases), you use the workflow shown in Figure 1-2.

To do this, you take each story and discuss it, the client takes a major responsibility for writing the
acceptance test for it, and you list all the tasks that need to be carried out in order to actually implement
the functionality involved in the user story. The acceptance test is basically a semi-formal to formal
statement of precise criteria according to which the work has actually been done right.

According to the Extreme Programming website (http://extremeprogramming.org — a great starting
point to finding out more about a lot of the methodology we are talking about and using in this book,
as is Kent Beck’s ground-breaking work on the subject, Extreme Programming Explained: Embrace Change;
http://amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0201616416):

Acceptance tests are black box system tests. Each acceptance test represents some
expected result from the system. Customers are responsible for verifying the correct-
ness of the acceptance tests and reviewing test scores to decide which failed tests
are of highest priority. Acceptance tests are also used as regression tests prior to a
production release.

Essentially ‘‘getting your site done right’’ means that all the acceptance tests pass for all user stories.
You’ll be learning about acceptance tests and other forms of testing, like unit testing, below in the book.

In any case, it should be clear that the acceptance tests must be written before any work is actually done.
Once written, and all the tasks necessary to implement a given user story are listed, each task can be

6

Chapter 1: Keeping It Simple

taken up by a pair (hopefully) of developers. (It’s much more productive for two people to work together
on a task, but we won’t get involved in any religious wars here; also, you might be working by yourself,
so just be prepared to put on a lot of hats!) The developers will take the task, make an estimate, carry
it out, and immediately integrate their work into the development test site. Later, the client will run the
acceptance tests for the user story, and if they pass, the work just got done! Otherwise, an issue is raised
in whatever issue tracking system you are using (more on this later), and the work is recycled, until the
acceptance tests all pass.

Let’s get our lean-and-mean methodology checklist straight now, starting with the task of mapping the
business vision and scope.

Starting with a Map for Business Vision and Scope
Experience at succeeding has shown that to achieve the benefits of the ‘‘KISS’’ approach, you actually
have to dig down deep to the roots of what is an organic, dynamic process. It is not a question of over-
simplification for the sake of simplification.

To succeed, you need to stand ‘‘commonsense’’ on its pointy head, at least for a while, and acquire a
deep vision: It is not only that those who lack a business plan will not enjoy financial success. While
true, what you are concerned with here is that without first identifying the business plan, there is no
way you can build a website application that meets your clients’ needs and fits right into their regular
activity. Real needs cannot be translated into an analysis and design, analysis and design into implemen-
tation, implementation into a working model for testing, a working tested model into a deployed website
application — the website application the client needs will never be born.

In traditional Information Technology terms, this is called a Business Model (see Wikipedia). The impor-
tance of business rules is present in the context of Agile Modeling, as well. Business Modeling is a difficult
subject to master in its own right, but thankfully, you can cut to the chase here, and draw yourselves a
Web 2.0 picture of the relationship between the business rules, the feature list, and the offerings of a
website application: a meme map.

For more on Business Models, see Wikipedia at http://en.wikipedia.org/wiki/
Business_model. For more on Agile Modeling, see http://agilemodeling.com/artifacts/
businessRule.htm. For more on meme maps, see ‘‘Remaking the Peer-to-Peer Meme,’’
by Tom O’Reilly, http://oreillynet.com/pub/a/495.

A meme map shows the deep relationship between the internal activities of a business or organization,
their strategic positioning, on the one hand, and that business’ outward, public face, on the other, includ-
ing the website applications and their functionality, which is what it is you actually have to develop.
Everything is clear at a glance. This is just what you need to get started. Look at Figure 1-3 (which shows
a meme map for a Drupal-based Literary Workshop website application) and the comments following it.

At the top, there are three bubbles containing the main public functionality of the website appli-
cation.

In the middle, the core is shown as a rectangle housing the positioning strategy and guiding
principles (which may well differ with someone attempting a similar kind of site, but which will
have a big impact on what you will be doing anyway).

7

Chapter 1: Keeping It Simple

Online literary
workshop

Writers write pieces and
show them to others

Writers critique
each others pieces

Writers organize in
affinity groups

Writers share ideas
about writing

Writers submit their
works for publication

publications call for
works to be
published

Online
magazines

Literary Workshop

– Writing is a social process, not an individual process
– The writer flourishes in her community.
– You must produce if you want to be part of the community.
– A literary work only exists if it is published.
– The writer needs to be able to acquire free tools.

Online writer-
publisher connection

Figure 1-3

Below are the regular business activities housing and forming the material basis and personal
interactions supporting the rest.

From this point on, ‘‘Keeping It Simple’’ is going to mean banishing anything that isn’t directly connected
to your business vision, automatically and constantly getting rid of the fluff.

Going to the heart of the matter, and keeping that present, will enable you to get a grip right from the
start.

There is a website where you can make your own meme maps (Do It Yourself Meme Map Generator,
http://web.forret.com/tools/mememap.asp), so you can try it out yourself. Or you can use any dia-
gram drawing tool. Or use pencil and paper (that will work!). In any case, I strongly recommend that you
follow along in this book by actually developing your website application as I develop mine. Practice
makes perfect.

Who’s Going to Use the Site?
This question really goes to the identification of the actual users of the website itself, and also the users
of the website in a business sense.

8

Chapter 1: Keeping It Simple

Perhaps a sector of the back office, for example, will never actually use the site as such, but will be inter-
ested in receiving periodic statistics, say, as a weekly email. They must be included, of course, in the list
of roles. Here’s a list of roles for the Literary Workshop website application:

Role Description

Workshop Leader The person who actually runs the workshop, decides who to accept,
monitors whether members are complying with requirements, and also
participates along with the other members

Workshop Member Someone who has joined the workshop and actively participates in it

Publisher Someone publishing a magazine, on and off the site

Webmaster Technical administrator of the website

The main thing is that every possible user of your website application needs to be taken into consideration
in order to truly capture the complete set of requirements that need to be met in the implementation of
the project. At the same time, a complete list of all interactions with the site (their user stories) for each of
these users completes the picture.

What Are They Going to Use It For?
Let’s make a list of user stories, then, for each of the Roles we have previously identified.

Role User Story

Workshop Leader Can approve applications to join the workshop (from members and
magazine and book publishers)

Can suspend members and publishers

Can manage affinity groups

Can broadcast messages to members

Can do everything workshop members and publishers can do

Workshop Member Can post literary pieces

Can make any post public, private, or visible to an affinity group

Can critique public posts

Can browse public pieces and critiques

Can send and receive messages to and from all members, publishers, and
the workshop leader

Can start an affinity group with its own forums

Can post to forums

Can maintain their own literary blogs

9

Chapter 1: Keeping It Simple

Role User Story

Publishers Can browse public content

Can broadcast a call for pieces to be submitted for a publication

Can select content for inclusion in a publication

Can manage an on-line publication

Can manage an on-line blog

Webmaster Can administer the website configuration

Can install new updates and functionality

What Needs to Be Done So They Can Do That?
You will be taking each user story and doing some analysis and design aimed at discerning what can
be reused from the giant Drupal storehouse of core and contributed functionality, and what needs to be
added on — perhaps contributing back to the community in the process (you’ll learn why this is a great
idea later on in the book).

But that isn’t enough. The answer to this question is actually to be found during the course
of the iteration planning workflow as well as in the user story implementation workflow.
During the planning stage, when we are prioritizing user stories and assigning them to
iterations, we would do well to bear in mind the organization of iterations established
by both the Rational Unified Process (see www-306.ibm.com/software/awdtools/rup as
well as http://ibm.com/developerworks/rational/library/content/03July/1000/1251/
1251_bestpractices_TP026B.pdf) and the Open Unified Process (see http://epf.eclipse.org/
wikis/openup/index.htm) into four phases, or groups of iterations:

Phase Iterations Description

Inception Usually a single
iteration, with a
resulting prototype

Vision, scope, and feasibility study enables the initiation of the
project based on cost and schedule estimates. Initial requirements,
risks, and mitigation strategies are identified, and a technical
approach is agreed on.

Elaboration Usually two
iterations, prototype
confirming
architectural
decisions

During the elaboration phase, the requirements baseline and the
architectural baseline are set. Iterations are planned. Planning,
costs, and schedule are agreed on. A lot of work gets done, and
the test site is up and running with successive development
releases.

Construction Enough iterations to
get the job done

Change management is in force from the onset of this phase.
Alpha and Beta release will be completed, and all Alpha testing
completed by phase end.

10

Chapter 1: Keeping It Simple

Phase Iterations Description

Transition Usually a single
iteration

Release 1.0 of the website application has been deployed on the
live site and accepted by the client and is in production. All
documentation and training have been completed, and an initial
maintenance period has elapsed.

Well, here we are getting to some pretty rigorous language. But, these phases actually occur in any
project, and it is best to be conscious of the whole process, so as to manage it instead of being managed.

The main thing to understand here is that as the basic workflow is followed, two baselines emerge,
relatively early in the project — a requirements baseline (the sum of all user stories) and an architectural
baseline. Now, the decision to use Drupal in the first place settles a slew of architectural decisions. But
you need to decide exactly how required functionality will be supported. Here are a few examples:

Which modules will support the use of images? Will images be Drupal nodes in their own right,
or fields in a node?

What editing facilities will different kinds of users have at their disposal? Will a wiki-style
markup approach be chosen, or will a rich text editor be necessary? Which one? And once it is
chosen, how will it be configured?

Will part of the site’s content find its origin in external sources? Will those sources be news
feeds? Will specialized multimedia modules be necessary? Will that content simply be listed, or
will it be incorporated into the database also?

To what extent will the website need to scale?

In terms of support for foreign languages, will there be a need for localization (the process of
adapting the user interface, including menus, currency and date formats, to a particular locale,
or language, locality, and their customs, commonly abbreviated as l10n)? Will there be a need
to make the content of the site multilingual through the use of internationalization modules (the
process of making one or more translations into various different languages available for each
content item, commonly abbreviated as i18n)?

What is the basic content model? What classes of content and what content types need to exist,
and what is the relationship between them?

And then there is also a whole other area of things that need to be attended to that are ongoing through-
out the project, namely, setting up development, testing, and production sites; setting up a build and
deployment procedure, including a version control system; and setting up an environment for everyone
working on the project, with all the necessary (compatible) tools and workstations. You guessed it — this
will be dealt with in detail in upcoming chapters.

To delve even further into the whole question of software development process engineer-
ing (really getting it done right!), check out the CMMI website (‘‘What Is CMMI?’’ at
http://sei.cmu.edu/cmmi/general). There are also books on the subject, specifically CMMI
Guidelines for Process Integration and Product Improvement, by Mary Beth Chrissis, Mike
Konrad, and Sandy Scrum (http://amazon.com/CMMI-Guidelines-Integration-Improvement-
Engineering/dp/0321154967), as well as CMMI Distilled (http://amazon.com/CMMI-
Distilled-Introduction-Improvement-Engineering/dp/0321461088). These sources give

11

Chapter 1: Keeping It Simple

a good overview and grounding for this model. This model has been proven totally compatible
with Agile approaches (www.agilecmmi.com/ is just one example), and while it may
definitely be overkill for most readers of this book, it may make all the difference in the world
for some.

When Should You Do That?
The answer to this question is: during the whole project! There will be constant imbalance and balance
struck again between two apparent opposites: the need to decide what to do and then do it, on the one
hand, and the need for change, on the other. So this calls for an incremental and iterative approach,
providing frequent opportunity for client feedback and for taking stock, and providing entry points for
change and its impact to be repeatedly evaluated.

The mistake has been made time and time again, of using the so-called waterfall model approach to website
development as a way of keeping things simple. ‘‘We will decide exactly what we want to do, and then
we will do it.’’ Experience has shown that this is a recipe for disaster and must be replaced with an
incremental and iterative approach.

For more information on the Standard Waterfall Model for Systems Development, see
http://web.archive.org/web/20050310133243 and http://asd-www.larc.nasa.gov/
barkstrom/public/The_Standard_Waterfall_Model_For_Systems_Development.htm.

Now, keeping it simple is actually the opposite of banishing change. Change is actually the mechanism
by means of which clients understand what they really want and make sure the final product embodies
their needs. That is why there need to be frequent iterations.

So, progress in the project means that various models are actually being built at the same time.
The architectural big picture emerges and takes shape on a par with the requirements baseline, sometime
in the third or fourth iteration, which is to say, together with actual deliveries of prototypes. By that
time, all the user stories are written, estimated, and prioritized, and the iterations to implement them are
planned.

But as the team starts plucking the next user story off the wall and starts seeing how to implement it, and
as the client begins to see his or her dream more and more in the flesh, subtle and not so subtle changes
will occur. If the planning has been good, then the user stories with the biggest likelihood of affecting
the architecture will be among the first to be tackled. Then their impact will be positive and will help to
shape the architectural baseline.

The catastrophe scenario to be avoided (and it is not always so easy to avoid) is a user story that gets
implemented very late in the game and turns out to have a huge impact on architecture. You find out, for
some reason, that the editing user interface simply has to be done in Flash, so we need to solve the
problem of how to integrate Adobe’s Remoting protocol with Drupal via, say, the Drupal Services
module. Well, it’s all good, but you really need to know about things that have that kind of impact
earlier on.

The more the work is planned around iterations that are constructed in terms of a basic architectural
vision and constantly checked by all concerned, the less likelihood there is of that kind of high-cost
impact catastrophe occurring.

12

Chapter 1: Keeping It Simple

What Should It Look Like?
Isn’t it nice that this is just one more little section of this chapter? Too often a project is reduced to its bells
and whistles (see the next section, ‘‘Making Sure You’re Getting What You Really Want’’).

Well, because having a ‘‘Web 2.0 design’’ really is a concern of many clients, a good way of understanding
what that means and what elements go together to constitute it, is the article ‘‘Current Web Design’’
(http://webdesignfromscratch.com/current-style.cfm).

But, most of all, you should be concerned about usability. You should concern yourself about form fol-
lowing content and being dictated by content. The best way to do that is to get the functionality of the site
going first, and then and only then imposing the graphic design. That is the method you will be using in
this book.

The obligatory read here is Steve Krug’s book, Don’t Make Me Think (http://sensible.com).
However, I have recently seen this book cited in the Drupal forums as a reason why people in general,
including developers, shouldn’t have to think. No, for the end-user of a website not to have to think (that
is what it’s about), a lot of thinking has to go on: Drupaleros have to do a lot of thinking to get their
websites done right.

The main lessons are:

The importance of usability testing

The need to start out with a clear home page instead of ending up with a home page that is out
of control

The importance of usability testing

The need to base your site navigation and design on how people really use the Internet

The importance of usability testing

Drupal is great for this kind of approach — first, because, as you shall see, it is its own greatest proto-
typer, and second, because of its great theming system. With Drupal, the functionality is really skinnable,
on a high level of detail and in a very flexible manner. But, of course, you have to know what you are
doing. However, once you learn the secrets, you can leverage an extremely powerful theming system
that has also proven itself to be very SEO friendly.

Making Sure You’re Getting What You Really Want
You should be concerned about testing, with the discipline of avoiding being driven by the bells and
whistles instead of by what you really need. You should also be concerned about ‘‘Feature Creep,’’ with
quality control, and with building, which is understood as the integration of dependable blocks and
units.

There are two basic principles involved here, and getting what you really want depends on both of them
being observed:

Unit testing forms an important part of the responsibility of implementing a piece of function-
ality. Unit tests must be written in such a way that they cover the maximum possible number of
key functional points in the code.

13

Chapter 1: Keeping It Simple

The whole process of development should be test-driven, by which we mean acceptance
test-driven. Acceptance tests are black box tests; they test how the website application should
behave. In website applications, usability testing forms an important part of acceptance
testing.

While there are other forms of testing that should be included, such as stress and load test-
ing, these two — unit tests and acceptance tests — are two you absolutely cannot do without.
Indeed, the PHP SimpleTest framework is becoming part of Drupal. The module page can be
found at http://drupal.org/project/simpletest, while great documentation is centralized at
http://drupal.org/simpletest.

We have already defined acceptance tests, and here simply need to stress that they should be written
and executed by the client, even though he or she will need to count on your assistance throughout the
project in order to do so.

Turning Over the Helm
At some point, the artist must be dragged kicking and screaming from her masterpiece and told:
‘‘It’s done. It’s not yours any longer; it belongs to the final user.’’ This, too, must be planned for and
implemented throughout the project. Its easy accomplishment is another beneficial result from getting
the client involved, early and actively, in the project. Seeing the client as someone to keep at a distance
like a bull in a china store will result in a difficult delivery of the website to those who will be using it
thereafter.

Again, an iterative approach will help, and is actually indispensable, in order to avoid the all-too-often
witnessed scenario of finishing a site and having no one to deliver it to, or else, delivery constituting itself
as an almost insurmountable obstacle.

From the start, the responsibilities must be clear. One example scheme could be the following:

Client is responsible for testing and acceptance.

Client is responsible for administering website users and setting their permissions.

Developer is responsible for updating Drupal core and modules.

Client is responsible for contracting hosting.

Developer is responsible for initial installation on production site.

This is why the phase is called Transition in the Unified Process approach. The website application itself
must be deployed after all testing is completed. A maintenance plan must be in place. But there must also
be documentation (manuals and/or on-line Help) and training in order to empower the client and the
final users to actually use what they have acquired, for them to really take ownership.

In the case of website applications, the tight schedules they usually have and the fact that the resources
actually required are generally overwhelming compared to what the client may actually have been think-
ing at the outset, so the more gradually this is all done, the better.

In this book, therefore, there will be a fictionalized client who will also be very much present throughout
the project and who will actually motorize everything.

14

Chapter 1: Keeping It Simple

Information Architecture and an Agile
Approach for the Rest of Us

Best practices fans and refugees will discern throughout this chapter a dependency — a ‘‘standing on the
shoulders of giants’’ — in relation both to the Agile approach to software development and to the disci-
pline of information architecture (see http://webmonkey.com/tutorial/Information_Architecture_
Tutorial; see also a more advanced article: http://articles.techrepublic.com.com/5100-22_11-
5074224.html). Here I am drawing from a huge body of materials, and given the practical character of
this book, I run the risk of treating these subjects superficially.

I hope that in the course of working through this book, it will be clear that I am not ‘‘name-dropping’’
buzzwords, but, rather, extracting from vast areas of expertise just what you need, and no more, in order
to succeed at a task that is sold to you as simple and straightforward and that is simple and straightfor-
ward compared to doing everything from scratch, but that is neither simple nor straightforward.

So everything mentioned in this chapter will be used thoroughly, and you will gain a practical familiarity
with all these tools.

So whether you are a project manager with specialized departments working under you, or someone
who practically has to do the whole project alone, your responsibility in getting this site done right will
very much make you a Renaissance person. You will learn much more about CSS and tools like Firebug
than you may care to, more about navigation and menu systems than you may care to, even more about
‘‘templates’’ and PHP than you may care to. Indeed, in using Drupal, you may learn much more about
‘‘Views,’’ ‘‘content types,’’ ‘‘Taxonomy,’’ and ‘‘clean URLs’’ than you ever dreamed of. You may find
yourself checking out from CVS and SVN repositories and apt-get installing whole operating systems, or
organizing and/or supervising others who do that as part of their everyday work.

You will find yourself involved in sending in ‘‘patches’’ to module maintainers. You may even be
involved in theme or module development. You will find yourself concerned about unit test ‘‘coverage’’
and usability tests.

It is hoped that you will end up with a site done right together with a stack of passed acceptance tests
that truly document the system requirements.

The Example Used throughout This Book
As mentioned, you will be developing the Literary Workshop website application as an example project
to illustrate the material presented in this book. Using a version control system and a standardized
deployment procedure, you will be able to move forwards and backwards in time to all stages of devel-
opment as part of your practical exploration.

As well, in the course of working your way through this book, you’ll discover a whole series of what are
termed reusable ‘‘Website Developer Patterns.’’ These are collectible challenges, solutions, and secrets
that crop up time and time again and need to be dealt with in project after project, and a systematic
approach must be found for them in order to get your site done right.

So, let’s get to it.

15

Chapter 1: Keeping It Simple

Summary
In this chapter, you have been introduced to the methodology to be followed in this book in order to
get the most out of the Drupal CMS framework, and to the nontrivial example you will be working with
throughout. The methodology is based on an Agile approach to any kind of software development, and
has been tailored to the development cycle required to develop a Drupal website application. In the next
chapter, you will take your first practical steps and get the functional prototype up and running.

16

Taking Baby Steps

This book is all about keeping it simple, but to be useful for those wishing to leverage Drupal,
the experience of working through this book must be based on a reasonably complex real-world
example. So, before diving right in, perhaps a recap is necessary.

In Chapter 1, the following questions were asked and answered in the context of using an Agile
approach in the development of the example site worked on throughout this book, the On-Line
Literary Workshop:

Question Answer

What’s the website for? A business model was created using a meme map.

Who’s going to use the
site?

It was emphasized that all user roles must be discovered in order
to be able to capture all of the requirements. Four roles were
discovered for the On-Line Literary Workshop: Workshop
Leader, Workshop Member, Publisher, and Webmaster

What are they going to
use it for?

Several user stories were identified for each user role.

What needs to be done
so that they can do
that?

An incremental and iterative method was adopted for planning of
the development to be undertaken, dividing the work into four
major phases (Inception, Elaboration, Construction, and
Transition to Deployment) by assigning the user stories to them,
ordered by the client’s priorities and the development need to
mitigate risk through the early tackling of tasks having a heavy
architectural impact.

During the initial, Inception, phase, Chapter 1 explains that a Vision is developed, outlining the
scope and feasibility of the project based on cost and schedule estimates; initial requirements, risks,
and mitigation strategies are identified, and a technical approach is agreed on, including a working
prototype.

Chapter 2: Taking Baby Steps

So now you are coming out of the Inception Phase of the project, the Literary Workshop website appli-
cation. We have a Vision and scope and identification of the customer based on the meme map and
the identification of user roles and user stories. Also, if we did the job right, we at least have a text
file somewhere outlining a list of risks: In this case — ‘‘We’re using several technologies we’re not
familiar with.’’ ‘‘Shared hosting is becoming downright impossible to use for any serious undertak-
ings.’’ ‘‘A friend told me Drupal is very database-intensive.’’ ‘‘Our client lives in Alaska, and there will
be no face-to-face meetings.’’ ‘‘The client’s best friend is doing the graphic design, and who knows
when that will be ready?’’ — And finally, we have settled upon a technical approach: We are defi-
nitely going to use a LAMP stack CMS framework deployed upon VPS hosting, with Drupal as our
first choice.

The big job ahead of us now, as outlined in Chapter 1, is to embark on the Elaboration Phase in order to
set the Requirements and Architectural baselines, and elaborate the planning.

For the Requirements baseline, you need to get the client to write the user stories you have outlined.
But you want her to see and experiment with a running prototype before she does that, so you all know
what you are talking about. This prototype will also allow you to experiment with different modules
and theme approaches in Drupal so that you can move toward the fixing of the Architectural baseline,
and — hopefully — make a dent in the risk list also.

In this chapter, you will work on the first two of the following list of tasks, wrapping up all of them by
the end of Chapter 5. So you certainly have your work cut out for you:

Creating an initial environment

Whipping up our initial prototype

Getting initial feedback from the client

Finishing the user stories with the client

Planning the project

Working on the architectural baseline

Getting the team organized and with the program

Creating an Initial Environment
Figure 2-1 shows your initial working environment.

I can hear lots of you saying, ‘‘Hey, wait a minute, this isn’t NASA, we’re not sending a man to the
moon.’’ Well, you may not believe it, but you will be an expert in stuff like this, and you will get used to
it in no time. And you will be very happy you did. And don’t worry — you can simplify things in lots of
ways. Referring to Figure 2-1:

The Developer Workstation can be your own Mac or Ubuntu notebook.

The Test Site can be practically any Drupal-friendly shared hosting.

The Resource Repository can be automatically set up for you very cheaply using a paid service
(such as — no endorsement intended — unfuddle.com, cvsdude.com, or svnrepository.com).

The Client Workstation is simply the computer the client uses to view the website.

18

Chapter 2: Taking Baby Steps

Resource Repository Test Site

Drupal Instance

Php SVN Client

Apache Http Server

Linux OS

Mysql

SVN Repository

Issue Tracking System

Drupal Instance

Developer Workstation

Drupal Instance

Php SVN Client

Apache Http Server

Linux OS

Mysql

Drupal Instance

Client Workstation

Figure 2-1

In Chapter 3, you will concentrate on the niceties and details of setting all of this up. In this chapter,
you concentrate on getting Drupal installed in a typical shared hosting environment as a test site. And
while not recommended, it is even possible to finish the remainder of the chapter with just that running
(although if you don’t have an issue-tracking system, you will have to put documentation somewhere
handy for both you and your client: these days, something like shared Google docs can be more than
enough).

By the way, before you go any further, the Drupal Documentation Handbooks (http://drupal.org/
handbook) are required reading for this book. They are getting better and better all the time, thanks to a
dedicated team of volunteer contributors. Please see the overview at http://drupal.org/node/23743,
where you can find out how to contribute yourself!

As mentioned on that page, the Drupal Dojo project (http://groups.drupal.org/drupal-dojo) is also
a great place to find a mutual help society as you climb the Drupal learning curve. That’s where I got my
start!

Installing Drupal as a ‘‘One-Click’’ Pre-Installed Script
So there’s more than one way to do it. Speaking of which, in order to install Drupal on a typical shared
hosting site, many people simply use the ‘‘single-click,’’ ‘‘pre-installed script’’ Fantastico approach, even
though this is a frowned-on practice in the Drupal community.

19

Chapter 2: Taking Baby Steps

Of course, simply for prototyping, it’s no biggie. But you’ll only have to uninstall later, simply because
experience has shown that when a security update comes out, Fantastico may not offer that for you right
away, and even if they do, your hosting provider may take even more time to update. So for production
purposes and any serious use, even as a personal blog, it is out of the question. If you want to go directly
to learning how to install Drupal right, skip to the next section.

However, in case you want to do this because just for prototyping you feel it may be best for the time
being (we don’t favor getting involved in religious wars here), follow these steps:

1. Log into your shared hosting control panel, and look for the Fantastico icon. Figure 2-2
shows it in a typical shared hosting control panel.

Figure 2-2

2. Click the Fantastico icon. Then, click Drupal, to be found in the list under the Content Man-
agement section (see Figure 2-3).

Figure 2-3

3. Click New Installation, and fill in the required details in the Fantastico installation form
(see Figure 2-4). The domain in which the Drupal instance should be installed will be
chosen for you by Cpanel. If you want, you can leave the ‘‘Install in directory’’ field blank

20

Chapter 2: Taking Baby Steps

to install in the root document directory of your website, or else, you can type workshop
to install into http://example.com/workshop. (Throughout this book, the mythical
‘‘http://example.com’’ URL will be used whenever a canonical URL is indicated.) To finish
up, you need to specify an administrator username and a password, plus an administrator
e-mail. And you’re done.

Figure 2-4

4. Click on the Install Drupal button. You are then given some summary info as shown in
Figure 2-5.

Figure 2-5

21

Chapter 2: Taking Baby Steps

5. Click on the ‘‘Finish installation’’ button so that the installation can actually proceed. After a
relatively short while, you should be rewarded by a final summary page (see Figure 2-6).

Figure 2-6

6. Jot down the admin username and password, e-mail the details of the installation to some
lucky person, and/or bookmark and go directly to the URL of your new Drupal installation.
(Figure 2-7 shows the freshly installed Drupal.)

Installing Drupal Right
You can use the Fantastico installed Drupal for the prototyping you need to do now, but eventually
you’ll need to do a manual installation of Drupal, which is actually pretty straightforward. Because you
definitely need to learn how to do this, the best thing is to learn that now.

There are many resources on installing Drupal at http://drupal.org, plus several video resources
around the Internet (e.g., see the two videos published by Addison Berry on the Lullabot site in the
References section at the end of this chapter).

What is involved in installing Drupal, exactly?

In Drupal 5.x, you just need to take these few steps and you’re done. The steps are as follows and are
detailed in the following sections:

1. Create a MySQL database and a user with full privileges to only that database. You can do
this in one of three ways — using a control panel provided by your hosting company (such
as CPanel or Plesk), using phpMyAdmin (recommended), or using the command line.

22

Chapter 2: Taking Baby Steps

2. Download Drupal, and unpack the tarball. Again, you have several options for making this
happen. You can use FTP, download it via the command line, or use CVS. Of these, I con-
sider using CVS the best way of all!

3. Make sure the settings file is filesystem-writable.

4. Point your browser at the Drupal installation.

5. Create your first users.

Figure 2-7

Creating a MySQL Database
As stated before, the first step in installing Drupal right is by creating a MySQL database and then creat-
ing a user with full privileges to only that database. You have three ways to do this:

Using CPanel (or other control panel) — These days, CPanel offers a MySQL Database Wiz-
ard. Basically, you are going to provide a name for the database (workshop), then on the next
page, a username (seven characters maximum: wrkshop) and password (workshop99, which
we are told is of 50% strength, so try to do better; in any event, you type that in twice). On the
next page, the username and password are displayed (write it down), and you click on ‘‘All

23

Chapter 2: Taking Baby Steps

Privileges’’ to indicate that this new user has all privileges to this, and only this, database (which
is what you want). Then you click Next again, and you are informed that your work is done:
‘‘User xxxx_wrkshop was added to the database xxxx_workshop.’’ Here ‘‘xxxx’’ refers to your
CPanel username, which is automatically prepended. So the upshot is that you have three items
of info, which is all you need for the Drupal installation Wizard:

MySql username

MySql user password

MySql database name to which the user has all privileges

Using phpMyAdmin — If you are using CPanel, the odds are that you will have to follow the
above procedure to create a database for your Drupal installation, but if your hosting provider
tells you that you can use phpMyAdmin to create the database, or you have your own setup with
phpMyAdmin installed, here’s the quickest and easiest way to do it (this is the recommended
method for creating a database for Drupal in this book):

1. Go to myPhpAdmin, and click the Privileges link shown in Figure 2-8. If it isn’t there,
use the previous method directly from CPanel.

Figure 2-8

2. Click on ‘‘Add a new User,’’ as shown in Figure 2-9.

24

Chapter 2: Taking Baby Steps

Figure 2-9

3. On the following page (Figure 2-10), fill in a username, make sure to indicate ‘‘Local’’
for host (localhost will automatically be filled in to the right), and provide a password.
Be sure to select the checkbox labeled ‘‘Create database with same name and grant all
privileges.’’

4. Click on the Go button on the bottom of the page. On the following page, you’re
informed that the new user has been added, and in the SQL query shown, which is the
one phpMyAdmin used to create the database, you can see that the database has been
created and that the user has full privileges on that database.

Using the Command Line — Some of us would just as soon install on the command line. Nowa-
days, this assumes that you have access to ssh (Secure Shell) on your hosting server. If you don’t
have that, ask your hosting provider to grant you that access, and often they will. They may ask
you for a reason, and you can simply say, ‘‘I want to download and install Drupal from the com-
mand line.’’

About the Command Line
The command line is definitely making a comeback. Undoubtedly, GUI (graphical user
interfaces) have been fundamental and essential for the generalized adoption of the
personal computer. But sometimes it’s just plain easier and more straightforward to

25

Chapter 2: Taking Baby Steps

punch out a few commands at the prompt in a terminal window than going through
a complex series of mouse strokes and drags, especially with tasks that are repeated
often.

This is recognized by the recent introduction of the amazing Ubiquity extension for
the Firefox plug-in, which allows you to do quick calculations and even searches and
translations from a command line that pops up with a shortcut key.

So for many of the tasks you need to do throughout this book, a command-line version
is almost always included, and sometimes it’s the most direct and even the only way to
accomplish some tasks.

A clear example of this is downloading a module to your server. The easiest way is to
right-click on the download link on http://drupal.org and copy the link URL. Then,
log in via a terminal window (gnome-terminal in Ubuntu, putty in Windows, iTerm,
etc.) to your website server, change directories to a convenient modules repository, and
perform the following command:

$ wget {module-download-URL}

That’s it! Otherwise, you have to download it to your local laptop or workstation and
then upload it via FTP or SFTP.

Figure 2-10
26

Chapter 2: Taking Baby Steps

A word to the wise: if you have just installed MySQL yourself, or you are in a
brand-new VPS or dedicated server installation, make sure that the root user has a
password. If you are not sure, do the following:

mysql -u root
ERROR 1045 (28000): Access denied for user ‘root’@’localhost’
(using password: NO)

If you do not see this error, but instead are given the mysql prompt, then no
password has been set. Set it as follows:

mysql> USE mysql;
mysql> UPDATE user SET Password=PASSWORD(’new-password’)i
WHERE user=’root’;
mysql> FLUSH PRIVILEGES;
mysql> quit
Bye

Now go back into MySQL as root, this time invoking use of the password, and
create the Drupal user and database as follows (putting in a secure password where
it says password, of course):

mysql> CREATE DATABASE dr_workshop;
mysql> GRANT ALL ON dr_workshop.* TO dr_workshop@localhost
IDENTIFIED BYi
‘password’;

mysql> quit

Again, you have the Drupal database and user, together with the password. Now to download Drupal,
unpack it, point your browser at it, fill in the database info, and we are done!

Downloading Drupal
Next, you want to download Drupal and unpack the tarball into the appropriate directory. Naturally,
there are many, many ways to do this. This section outlines four in the sections that follow.

Using FTP
You could download the Drupal installation tarball onto your workstation, unpack it using your favorite
file manager, and then upload all the files to the appropriate directory on your hosting server using
FTP. To download Drupal 5.x in the first place, point your browser at http://drupal.org, and in the
top-right-hand corner, click the release you are interested in downloading. In this case at this point,
it is Drupal 5.x., so click the latest 5.x release, which at the time of this writing was Drupal 5.7 but
could well be Drupal 5.11 or later for you. Download the file, which will be named something like
http://ftp.drupal.org/files/projects/drupal-5.7.tar.gz (with the .7 changing with the point
release version, e.g., to .11). Then you can unpack it and upload it to your server using your favorite FTP
client.

A word to the wise: Make sure you upload the .htaccess file in the Drupal root
directory. You may have to configure your FTP client to not hide files starting with a
dot. Failure to upload this file will cause you all kinds of problems.

27

Chapter 2: Taking Baby Steps

Doing It on the Command Line
If you want to place your Drupal installation into a subdirectory of the document root of your hosting
server (maybe you redirected a subdomain to point there), this is pretty straightforward. From the Drupal
Download page, instead of clicking the Drupal release download link, right-click on it and choose Copy
Link Location. Then from your document root, type wget on the command line, leave a space, and paste
in the download URL for the Drupal tarball. After pressing Enter, you should see something like this:

wget http://ftp.drupal.org/files/projects/drupal-5.7.tar.gz
--18:28:36-- http://ftp.drupal.org/files/projects/drupal-5.7.tar.gz

=> ‘drupal-5.7.tar.gz’
Resolving ftp.drupal.org. . . 140.211.166.134
Connecting to ftp.drupal.org|140.211.166.134|:80. . . connected.
HTTP request sent, awaiting response. . . 200 OK
Length: 754,688 (737K) [application/x-gzip]

100%[====================================>] 754,688 249.00K/s

18:28:40 (248.33 KB/s) - ‘drupal-5.7.tar.gz’ saved [754688/754688]

Then, simply untar in the following manner (notice typical output):

tar xvzf drupal-5.7.tar.gz
drupal-5.7/
drupal-5.7/includes/
drupal-5.7/includes/bootstrap.inc
drupal-5.7/includes/cache.inc
. . . (all the subdirectories and files)
drupal-5.7/themes/pushbutton/tabs-option-hover.png
drupal-5.7/themes/pushbutton/tabs-option-off.png
drupal-5.7/themes/pushbutton/tabs-option-on.png

You will now have a subdirectory named something like drupal-5.7. Simply rename it as follows, and you
are done:

mv drupal-5.7 workshop

Installing Drupal into the Root Directory
As an example, this is if it is the main application running on your site. This method is just a tad trickier.
For this, you simply make use of the tmp directory or any other handy location. Assuming that your
server document root is at /home/myaccount/public_html, do the following:

cd /tmp
wget http://ftp.drupal.org/files/projects/drupal-5.7.tar.gz
tar xvzf drupal-5.7.tar.gz
cd drupal-5.7
cp -r * /path/to/public_html
cp .htaccess /path/to/public_html

Doing It with CVS
This is the best way of all! Concurrent Versions System CVS (www.nongnu.org/cvs/) is a version control
system built atop historic *nix tools, on which Drupal bases its releases. This may or may not look very

28

Chapter 2: Taking Baby Steps

intimidating to you at first, but actually what it does when you issue the appropriate command is grab a
whole complete file-tree from the Drupal repository and stick it just where you want it on your server.

And that’s not all: as you’ll see in the next chapter, with the issue of a very simple command, you can
carry out updates of various kinds, on Drupal itself as well as on functional add-on components.

As explained in the Drupal Documentation Handbooks (http://drupal.org/node/320), after navigating
to the directory where you keep all your sites (on a typical shared hosting, that might be public_html; on
your own development box, that might be /var/www), you can check out a fresh copy of Drupal to a
subdirectory called drupal, which can then be renamed to whatever you wish by issuing the following
command:

cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal co -r i
DRUPAL-5-7 drupal

So this will check out Drupal 5.7 into the subdirectory drupal. For other release core branch names, see
http://drupal.org/node/93997. You can even find instructions on this same Drupal handbook page
on how to create an ‘‘alias’’ in your bash shell so that you can just type out a simple command for this,
such as checkout5-7 or checkout6 or checkouthead (to check out the development branch in order to
experiment for non-production sites).

Because of the way Drupal is packaged in the CVS repository, if you need to install Drupal into the web
root directly, you need to do the same as above, and then copy to the web root. Don’t forget the .htaccess
file! Supposing you have unpacked Drupal 5.7 into the /tmp/drupal-5.7 directory, navigate to the web
root directory and do something like the following:

$ cp -R /tmp/drupal-5.7/* .
$ cp /tmp/drupal-5.7/.htaccess .

Making Sure the Settings File Is Writeable
Now you are almost ready to point your browser to where you have unpacked Drupal, provide the
database information, and get started. But because the automatic install Wizard will be writing your
database settings to a settings file (appropriately enough: ./sites/default/settings.php), you need to
make that filesystem writeable. While this can certainly be done using your FTP client, supposing you
were doing this on the command line, you would simply do the following, directly from the document
root:

chmod 666 sites/default/settings.php

and then once you finish running the browser-based Drupal installation Wizard, you re-protect the file
with the following command:

chmod 644 sites/default/settings.php

See more about filesystem permissions at http://drupal.org/server-permissions.

Pointing Your Browser at the Drupal Installation
Supposing you were installing Drupal on your personal development workstation or laptop, you would

point your browser at http://localhost/workshop and fill in the information (if you are running PHP5,

29

Chapter 2: Taking Baby Steps

which you actually most certainly should be, use the ‘‘mysqli’’ option — see Figure 2-11 — Drupal 6 does
this for you):

Figure 2-11

After hitting the Save configuration button, you can see that you are done (see Figure 2-12):

Figure 2-12

30

Chapter 2: Taking Baby Steps

You are warned about removing Write permissions from ./sites/default/settings.php, as described
above, and after taking care of that, you can click the link taking you to your new site.

Creating Your First Users
Click on the ‘‘Create the first account’’ link, which now appears on the Welcome to Drupal page (included
until the first content is created), and follow the instructions, naming this user admin. As the instructions
say, ‘‘This account will have full administration rights and will allow you to configure your website.’’ For
this reason, most experienced Drupal users only use this user on rare occasions, for upgrading and other
superuser actions, to protect the session from ever being hijacked.

So after creating your superuser admin, you’re told the automatically created password, which you should
change at this very screen: Fill in the new password in the Password and Confirm password fields, and
hit the Submit button at the bottom of the page.

At this point, consult the ‘‘Configure Your Website’’ section of the Drupal Documentation Handbooks
(found for Drupal 5 at http://drupal.org/getting-started/5/install/configure), and follow the
instructions there for configuring your site and creating a special administration role and everyday
administrator user.

Whipping up the Initial Prototype
At this point, you should be interested in getting the initial prototype going in order to get feedback from
the client on whether or not all the roles have been created and the list of user stories is complete. Then
the user stories can be written.

At DrupalCon Barcelona 2007, I gave a presentation called ‘‘Using Drupal Itself to Prototype
Your Drupal-Based Web Application’’ (see http://barcelona2007.drupalcon.org/node/512).
There I quoted Dries as having recommended the article ‘‘Death to Visio Site Maps! How Clear
Ink Uses Drupal for Information Architecture, Prototyping, and Project Management’’ (see
http://clearnightsky.com/node/318). There, one method of prototyping is outlined, and we certainly
share the sentiment that Drupal is its own best prototyper.

In the next sections, you are going to create the necessary roles, create some users, and get some basic
functionality going according to our list of user stories.

Implementing Roles
For each role, you are going to . . .create a role! Log in to your Drupal site with your everyday admin user
ID (let’s call that dev).

Dev, by the way, is an important user, fulfilling an important role. To create it, follow these steps:

1. First create the role by going to Administer � User management � Roles and simply adding
the admin role. Then you assign it all permissions without exception either by clicking ‘‘Edit
Permissions’’ or else by proceeding to Administer � User management � Access control
(where you can see the permissions granted to all roles simultaneously) and doing the same.
Figure 2-13 shows the screen for setting permissions.

31

Chapter 2: Taking Baby Steps

Figure 2-13

2. Now go to Administer � User management � Users and create the dev user, as shown in
Figure 2-14.

3. Log out as admin, and log back in as user dev on an everyday basis for the duration of the
project (except for superuser tasks such as core and module updates). User dev should have
full Administer privileges; if that is not the case, log back in as admin and make sure that all
permissions have been granted to the admin role.

4. As dev, go to Administer� User management� Roles, and create the following roles, on the
basis of our requirements captured so far (see Chapter 1):

Workshop Leader

Workshop Member

Publisher

Webmaster

5. Assign the permissions to the various roles, and create example users in a bit, after creating
your business objects. For now, you should have what you see in Figure 2-15, which shows
the roles for the Literary Workshop website application.

32

Chapter 2: Taking Baby Steps

Figure 2-14

Implementing the Business Objects
In Chapter 1, a first-cut list of user stories was identified (see the table in the section ‘‘What Are They
Going to Use It For?’’ in Chapter 1). The basic objective in creating the initial prototype is to implement
the user stories corresponding to each role on a very simple level. This involves a workflow by means of
which users of each role can act on a series of business objects: They should be able to create, list, select,
modify, and/or delete them.

With the stock, default Drupal you have installed right now, you can create stories (for simple articles)
and pages (for static content such as an About page). If you enable the core modules packaged with
Drupal — blog, forum, and book — you can create these additional forms of content. On the navigation
menu (headed dev when you are logged in as user dev, and navigation for unregistered users), on the
left-hand side of the screen is the option Create Content. Clicking that link brings up a list of content
types currently supported by the system. But apart from this basic Content Management functionality
that comes with Drupal out-of-the-box, you need to have a way to define content types (business objects)
capable of being handled separately, and capable of supporting specialized data attributes, or fields.

33

Chapter 2: Taking Baby Steps

You need a ‘‘posted work’’ with a word count field, for example, and an ‘‘application for membership’’
content type as well.

Figure 2-15

Historically, in order to create a custom content type with additional fields of various kinds, you had to
write a node module in PHP. But starting with Drupal 4.7, the Content Construction Kit (CCK) module
(http://drupal.org/project/cck), like the (now essentially deprecated) flexinode module before it,
enabled non-programmers to create additional content types from the administration panel, without
programming, and also allowed for additional fields to be specified for the new content types.

In Drupal 5.x, the functionality for actually creating the content type was included in Drupal core, with
the functionality for creating additional fields left in the contributed module, which means that to add
fields, it is necessary to download and install the module.

So that is what you’re going to do right now. At this point, of course, you should read the instructions
‘‘Installing Contributed Modules’’ in the Drupal handbook (http://drupal.org/node/70151), and then
consult the README.txt file that comes with the module itself. But I would like to show you the steps I
happened to follow now, and also take the opportunity to underline one important consideration:

34

Chapter 2: Taking Baby Steps

Word to the wise: Do not install contributed modules in the modules directory
where core modules are placed.

When you download a fresh Drupal installation, there are two subdirectories,
Modules and Themes, where core elements are placed. The reason you never want
to store your own or downloaded modules and themes there is that when it comes
time to update your Drupal core, it is going to be a very painstaking process to have
to pick and choose what directories and files need to be overwritten and which
should not be. You need to be able to confidently unpack a new Drupal release right
on top of the current one, run the update script, and be on your way. So you must
store anything that is not core and comes pre-packaged with a fresh Drupal
installation in its own place.

That place for most people using Drupal, for a single Drupal site installation, is usually
./sites/all/modules and ./sites/all/themes (see ./sites/all/README.txt). That way, you have
your sites subdirectory full of site-specific stuff, and all the rest of the installation is pure off-the-shelf
freshly downloaded Drupal. The only exception here is the files directory (images, videos, etc.), which
can either reside below ./sites also, or else on the top level.

So to install CCK you need to download it, unpack it, and stick it under ./sites/all/modules. Here are
the basic steps:

1. Here is the original directory structure for sites:

sites
|-- all
| ‘;-- README.txt
‘-- default

‘-- settings.php

2. Modify it as follows by creating Modules and Themes directories under sites/all:

victorkane@mentor:/var/www/workshop$ cd sites/all
victorkane@mentor:/var/www/workshop/sites/all$ mkdir modules themes

You can see your new directory structure by stepping back and looking at the sites directory
tree:

victorkane@mentor:/var/www/workshop/sites/all$ cd ../..
victorkane@mentor:/var/www/workshop$ tree sites
sites
|-- all
| |-- README.txt
| |-- modules
| ‘-- themes
‘-- default

‘-- settings.php

4 directories, 2 files
victorkane@mentor:/var/www/workshop$

35

Chapter 2: Taking Baby Steps

3. From the command line, change the directory to ./sites/all/modules, grab the CCK mod-
ule using wget (go to the CCK module page, right-click on the download link, and select
Copy link location or similar, then paste it as an argument to wget) and then unpack it under
./sites/all/modules. Step by step:

victorkane@mentor:/var/www/workshop$ cd sites/all/modules
victorkane@mentor:/var/www/workshop/sites/all/modules$ wget i
http://ftp.drupal.org/ i
files/projects/cck-5.x-1.7.tar.gz
--15:26:45-- http://ftp.drupal.org/files/projects/cck-5.x-1.7.tar.gz

=> ‘cck-5.x-1.7.tar.gz’
Resolving ftp.drupal.org. . . 140.211.166.134
Connecting to ftp.drupal.org|140.211.166.134|:80. . . connected.
HTTP request sent, awaiting response. . . 200 OK
Length: 130,633 (128K) [application/x-gzip]

100%[================================>] 130,633 95.71K/s

15:26:47 (95.54 KB/s) - ‘cck-5.x-1.7.tar.gz’ saved [130633/130633]
victorkane@mentor:/var/www/workshop/sites/modules$ tar xvzf
cck-5.x-1.7.tar.gz
cck/
cck/po/
cck/po/cck.pot
cck/po/da.po
. . .

cck/theme/field.tpl.php
cck/theme/node-content_example.tpl.php
cck/theme/template.php
cck/LICENSE.txt

4. Now, you can either copy the module tarball to a storage space of your own or (as shown
below) delete it directly:

victorkane@mentor:/var/www/workshop/sites/all/modules$ ls
cck cck-5.x-1.7.tar.gz
victorkane@mentor:/var/www/workshop/sites/all/modules$ rm
cck-5.x-1.7.tar.gz

That’s it. In Drupal itself, go to Administer � Site building �Modules, and enable the CCK module.

Quick admin aside: But wait, what’s that red warning when you visit the main Administer page? The
following table shows initial site-housekeeping tasks:

Problem Solution

Administration page
warnings

Click the status report link (shown in Figure 2-16) to see what needs to
be done.

Configuration file not
protected

Remove Write permissions on ./sites/default/settings.php:
cd sites/default/
ls −l
total 8

36

Chapter 2: Taking Baby Steps

Problem Solution

-rw-rw-rw- 1 victorkane victorkane 5983 2008-05-31 19:21
settings.php
chmod 644 settings.php
ls -l
total 8
-rw-r--r-- 1 victorkane victorkane 5983 2008-05-31 19:21
settings.php
#
The warning will no longer be present. (Note: this task can
also be accomplished by using your favorite FTP client.)

cron maintenance tasks Run cron manually (if search is enabled, search indexing will
progress).
Or, set up cron tasks on the system. This can be done directly
through the CPanel in shared hosting, or else via the command:
crontab -e
This allows you to edit the cron tasks in your system.
Afterward, it should be possible to visualize the cron tasks with
the following command:
crontab -l
m h dom mon dow command
0 3 * * * wget -O - -q
http://example.com/cron.php
#
If you visit Administer � Log � Recent log entries, you will
eventually see the message ‘‘Cron run completed.’’ See Drupal
Documentation Handbook, ‘‘Configuring cron Jobs,’’ at
http://drupal.org/cron.

Filesystem not writeable Using either your favorite FTP client or else the command line,
create a file directory in the main Drupal root directory, and make
sure the HTTP server has write permissions to it. Try to do this
without giving out full permissions indiscriminately.
For example, on an any Linux system (where www-data is the
HTTP server user and group), you can do the following (where
/var/www/workshop is the web root):
cd /var/www/workshop
mkdir files
chown www-data:www-data files

To enable the CCK module, visit Administer � Site building �Modules, where you’ll now see the Con-
tent and associated modules listed. You need to enable all of them and hit the ‘‘Save configuration’’
button at the bottom of the page, to receive the following confirmation:

The content fields table content_type_page has been created.

The content fields table content_type_story has been created.

The configuration options have been saved.

37

Chapter 2: Taking Baby Steps

Now, the dev user already has ‘‘Administer content types’’ permission, so you don’t need to set any
additional permissions for the content types. You can move directly to implementing the business objects
you require.

Figure 2-16

Now, which business objects do you require? You make a stab at answering that question by making a
lexical semantic analysis (see Figure 2-17). You do this by circling significant nouns.

Figure 2-17

38

Chapter 2: Taking Baby Steps

This gives us the chance to do two things: to identify all the business objects, and, where there are
ambiguous synonyms, to unify and tighten up our lexicon, yielding the following domain model.
Figure 2-18 shows the initial domain model for the Literary Workshop website application, based on the
nouns circled in the user story text.

application

Publisher

WorkshopMember

WorkshopLeader
1

1
1..*

workshop

magazine

literary_piece_critique

literary_piece

literary_piece_version

afinity_group

book

forumblog

Figure 2-18

Some of the content types are built right into Drupal and implemented in the core (such as blog, forum,
book). And others are available as well-respected and high-quality contributed modules (affinity_group
and workshop, to be implemented with the Organic Groups module). The business objects shaping up as
being application specific are:

literary-piece

(possibly) literary_piece_critique (unless these are simply core comments)

magazine

application

Let’s create the application for membership first. You could simply use the core supported contact form,
but you might need extra handling and historical persistence, so this fills the bill for requiring a custom
content type.

To create it, follow these steps:

1. Go to Administer � Content management � Add content type.

2. Fill in Application in the Name field, then the machine-readable name of the application,
together with a brief Description: The Application is filled out by those applying for mem-
bership in the Literary Workshop.

39

Chapter 2: Taking Baby Steps

3. Because this is an application form, ‘‘Title’’ in the Title field label isn’t very meaningful. You
actually need to have a composite title created according to what is typed into other fields
you’ll be creating, such as first and last name, or an e-mail. Because this functionality is not
available in a fresh Drupal installation, simply type E-mail, although in a later chapter, you’ll
learn how to achieve automatically created and hidden titles with the excellent Automatic
Nodetitles module (http://drupal.org/project/auto_nodetitle), which will be forming
part of your ‘‘must have’’ repertoire of contributed modules.

4. Erase the word Body from the ‘‘Body field label.’’

Word to the wise: You practically never want to use the deprecated content type field
Body when you’re creating a custom content type. If you want a textarea, you should
add it yourself so that it gets treated the same as all your other fields.

5. In the Workflow section, de-select the ‘‘Promoted to front page’’ checkbox, and select the
‘‘Create new revision’’ checkbox to leverage the fantastic, built-in Drupal version control
system. Click on the ‘‘Save content’’ button to create the content type. This takes you to
Administer � Content management � Content types, where you see your newly created
content type listed together with its description, along with the built-in Page and Story,
along with an info box telling you:

Figure 2-19

40

Chapter 2: Taking Baby Steps

The content fields table content_type_application has been created.

The content type Application has been added.

This kind of content type creation is supported in every fresh Drupal installation.

6. You’re now going to add some additional custom fields, thanks to the fact that you’ve
installed the CCK module, starting with a textarea enabling those applying to say what their
reasons are. To do so, click on the Edit link associated with the Application content type,
and then click on the ‘‘Add field’’ tab (see Figure 2-19).

7. In the Name field, type in a machine readable name: application_motives.

Word to the wise: Always use a prefix with all machine-readable field names, so that
they may be easily identified in long selection lists while creating views, and so on.
The prefix should identify the content type at a glance.

8. Because the data you want to hold is text, select ‘‘Text Field’’ under Text. Then click on the
‘‘Create field’’ button (see Figure 2-20). This takes you to the second page of the Wizard,
where you are informed that the field application_motives has been created.

Figure 2-20

41

Chapter 2: Taking Baby Steps

9. CCK lets you share field types across content types, so the second page of configuration has
Widget settings, which affect the presentation of the field on the current content type and
Data settings, thus affecting the field on any content type where it is used. In the Label field,
replace the machine-readable name application_motives with Reasons for wanting to join the
workshop. Because you want a textarea and not a single line, specify 7 as the number of rows.
Fill in something suitable as Help text, and click on the ‘‘Save field settings’’ button at the
bottom of the page. You’re taken to the ‘‘Manage fields’’ tab as shown in Figure 2-21.

Figure 2-21

10. Now click on the ‘‘Add Field’’ tab again to create the following fields:

Label Machine-Readable Name Field Type Field Type Number of Lines

Category

First name application_first_name Text Text Field 1

Last name application_last_name Text Text Field 1

Published application_published Text Checkboxes/radio buttonsYes/no

42

Chapter 2: Taking Baby Steps

The Published field is a different type from the previous example and is covered below.

11. For the Published field, on the second page of the Wizard, under ‘‘Data settings’’ in the
‘‘Allowed values list,’’ place Yes and No on consecutive lines, and then click on the ‘‘Save
field settings’’ button (Figure 2-22).

Figure 2-22

You’re taken back to the ‘‘Manage fields’’ tab, and at this point should have something like
what you see in Figure 2-23.

12. You just need to do one more thing: explicitly specify the order in which fields should
appear in the form. Do this by selecting the Weight for each field and then clicking on the
Update button, giving us something like Figure 2-24.

13. Moving right along in this initial prototyping, you’re going to put this application form on
the Primary menu and test how it works for first-time visitors to the site. Go to Adminis-
ter � Site building �Menus, and under the Primary links menu, click on the ‘‘Add item’’
link. Type Join! in the Title field, Join the literary workshop in the Description field, and
node/add/application in the Path field, as shown in Figure 2-25.

43

Chapter 2: Taking Baby Steps

Figure 2-23

Figure 2-24

44

Chapter 2: Taking Baby Steps

Figure 2-25

14. Click on the Submit button at the bottom of the form. From now on, in the upper-right-hand
corner of the screen, you’ll see the Join! Menu item. A mouse-over reveals what you typed in
the Description field, and clicking on the mouse-over brings up your newly created Applica-
tion form. Go ahead and do so, just to see what the form looks like, without actually submit-
ting it for now (see Figure 2-26).

15. Hmm. The Published field isn’t clear at all. Try adding a Help text. In this case, you’re going
to add If you like, tell us if you have ever published your work before. The automatically
created N/A option plays nicely here. Go to Administer � Content management � Con-
tent types, and click Edit for the Application content type. Click on the ‘‘Manage fields’’ tab,
and then click to configure the application_published field. Fill in the Help text field, typing
If you like, tell us if you have ever published your work before, and click on ‘‘Save field
settings.’’

To quickly go over our mini-workflow here: A visitor will come to the site, click on the Join! link, and fill
out an application form (see Figure 2-25). This will be added to the database as an ‘‘application’’ instance.
Then the Workshop Leader will come along, list all the application forms, and act on them, accepting
them or not into the workshop, and will then mark the application as having been dealt with.

45

Chapter 2: Taking Baby Steps

Figure 2-26

When we say ‘‘Drupal rocks’’ and is its own best prototyping tool, it is because we can actually do that
right now without any coding at all!

So you need to do the following:

Give admin role users all permissions to the new content type you have created.

Give anonymous users the right to create an application content type (i.e., fill out an application
form).

Give users of the Workshop Leader role the right to edit application forms.

Create a Workshop Leader user.

Test.

To do this, go to Administer � User management � Access control. Give anonymous users permission
to create application content so that when they enter the site, the Join! menu item will be visible to them.
Give the Workshop Leader permission to create and to edit application content. And make sure that

46

Chapter 2: Taking Baby Steps

the admin role has all permissions. Figure 2-27 shows the screen where you click checkboxes to activate
permissions. Please note that because you have to scroll to see the screen, the screen had to be broken
into two different screenshots.

Figure 2-27

Now, test your workflow, by following these steps:

1. In another browser, without logging on as the dev user, enter the site.

2. Hmm. You can do better than ‘‘Welcome to your new Drupal website’’ even if this is
a whipped-up prototype. In the browser where you are logged in as dev, click ‘‘Create
content’’ and then click ‘‘Story.’’ Type in Literary Workshop as the Title and Welcome to
our on-line literary workshop as the Body. Under publishing options, you will see that
‘‘Promoted to the front page’’ is selected by default. That will do fine for now. Click Submit.

47

Chapter 2: Taking Baby Steps

3. While you’re at it, just give the site a name. Go to Administer � Site configuration � Site
information, and enter a site name to replace Drupal, together with an e-mail address and
a slogan and/or mission, if you like. Then click on the ‘‘Save configuration’’ button at the
bottom of the page.

4. Now refresh the browser being used by the anonymous user. It should look something like
Figure 2-28.

Figure 2-28

Now the site visitor can click Join! and click Submit to enter his or her application to join the workshop,
as shown in Figure 2-29.

This has been a long haul. If you sense you’re rounding off your first cut of tasks, and that you have
something to show for your work, you’re probably right. If you can just get the initial workflow going
for the Workshop Leader, you can postpone the rest of the tasks to the second iteration in the next chapter
and go for a walk or game for a couple of hours.

Putting the First Role to Work (Initial Basic CMS
Workflow. . .)

You still need to create a Workshop Leader user and test the workflow. To do so, follow these steps:

1. Go to Administer � User management� Users, and click on the ‘‘Add user’’ tab. Fill in pam
for the Username, provide an e-mail and a password, and check the Workshop Leader role.

48

Chapter 2: Taking Baby Steps

If applicable, check the ‘‘Notify user of new account’’ box. Click ‘‘Create new account.’’ The
new user pam is listed as active and of the Workshop Leader role.

2. Reviewing the workflow you want to implement, you may have realized that pam will list
all application forms and then act on them. That is, she will need to have permissions to cre-
ate new users. So re-visit Administer � User management � Access control, and grant the
following permissions to the Workshop Leader role:

a. In the Node Module section, permissions to access content, administer nodes, create
application content, and edit application content

b. In the User Module section, permissions to access user profiles, administer access con-
trol, administer users, and change own username. (You trust her a lot — after all, she is
the Workshop Leader!)

3. Now log out, and log in as pam, as shown in Figure 2-30.

Figure 2-29

49

Chapter 2: Taking Baby Steps

Figure 2-30

The Workshop Leader user pam can now hit Content in order to list application forms. Right now, there
are only two items of content in the system, the application form submitted by you from another browser
posing as a site visitor, and the Story promoted to the front page.

pam clicks on the application content and reads it and decides what to do. In this case, she feels that
the applicant is worthy, so she right-clicks Users from her menu and opens up Administer � User man-
agement � Users in another window or tab while still being able to visualize the application form she
is reviewing. She clicks on the ‘‘Add user’’ tab and creates the user with Name buddingauthor and the
corresponding e-mail and password. She leaves Status as Active, selects the role of Workshop Member,
and selects the ‘‘Notify user of new account’’ so that they will receive an e-mail telling them that they can
now log into the system as a Workshop Member.

To complete the workflow, one method pam has of indicating that she is done working with that partic-
ular application form is to label it as unpublished. A little study of how the filters work on this page will
show how it is possible to filter the content in the database to only those of type ‘‘application’’ and of
status ‘‘published.’’ Very powerful stock content management tools! Drupal rocks!

Summary
OK, you have certainly accomplished a lot for a day’s work. You have seen several detailed descriptions
of all the steps required to install Drupal, including recommendations for best practices. And you have
gotten to work on the initial working prototype of the On-Line Literary Workshop, implementing roles
and user permissions, business objects as Drupal content types. Finally, a primitive CMS workflow is
established allowing the Workshop Leader to manage applications for membership.

In the next chapter, we will work to flesh out these tasks.

50

Chapter 2: Taking Baby Steps

References

1. Berry, Addison, Installing Drupal 6, www.lullabot.com/videocasts/installing-drupal-6

2. Berry, Addison, Install a Local Web Server on Ubuntu, www.lullabot.com/
videocast/install-local-web-server-ubuntu

3. ‘‘Death to Visio Site Maps! How Clear Ink Uses Drupal for Information Architecture, Proto-
typing, and Project Management,’’ http://clearnightsky.com/node/318

4. Concurrent Versions System, http://en.wikipedia.org/wiki/
Concurrent_Versions_System

5. Drupal Documentation Handbooks, http://drupal.org/handbooks

6. Drupal Dojo Project, http://groups.drupal.org/drupal-dojo

51

Getting Organized

So you’ve started the project and identified your customer and her objectives, and identified the
roles: the distinct kinds of users who will be interacting with the website application. You’ve
installed Drupal and begun getting your prototype on the road by creating your first cut of business
objects based on a lexical analysis of the user story titles. You are almost at the point where you can
ask the client for feedback to make sure the roles and list of user stories look complete, and to write
the user stories. Coherency will be enhanced by her using the semantics offered by the list of busi-
ness objects and the limited functionality you have started to put together based on input received
so far.

Figure 3-1 shows the elaboration iteration as it looks now.

It doesn’t look like it, but you have actually done quite a lot of work already. Still, there’s plenty
left to do. Let’s see how much we get done in this sprint, starting with the third task: get initial
feedback from the client Pam (who actually does live in Alaska!) on Skype, and show her the website
deployed to the test site (see Chapter 2).

Before that, though, let’s just review how the first task, creating an initial environment, is imple-
mented and how you can synch up your development box and your test site on a daily basis so that
the client can always check out the latest relatively stable version on the test site.

Reviewing the Initial Environment
To build upon a solid foundation, it is necessary to deal with the whole question of version control,
the source code and assets repository, and issue tracking, and get that started right now. You are
going to be doing all your work on your development box in whatever cubicle world you inhabit.
When you get everything to a particular point (as, e.g., at the end of the last chapter), you are going
to be committing what you have to a Subversion repository and then updating the test site from
that same repository.

Chapter 3: Getting Organized

Create an initial environment

Whip up the initial prototype

Get initial feedback from the client

Finish the user stories with the client

Plan the project

Work on the architectural baseline

Get the team organized and with the program

Figure 3-1

Subversion (http://subversion.tigris.org), or SVN as it is referred to, is an Open
Source version control system. For some background on version control systems in general, see
http://en.wikipedia.org/wiki/Revision_control.

I use a Trac instance to visually review my repository and the commits, and to document the
project Milestone planning and tracking. To do this, I contract a Subversion + Trac hosting
service. You can choose your own (either free or commercial) from the list on the Trac wiki
(http://trac.edgewall.org/wiki/CommercialServices), or set up your own if you feel so
inclined on your own server (hosting companies like Dreamhost and Site5 allow this even on
shared hosting).

Trac, another Open Source project, is ‘‘an enhanced wiki and issue tracking system for software
development projects’’ (see http://trac.edgewall.org). Bugzilla is another excellent alternative,
among many, but Trac’s ‘‘minimalistic’’ approach is very attractive. For background on issue tracking
systems, see http://en.wikipedia.org/wiki/Issue_tracking_system.

The basic features to look for, apart from price and reliability (which you will find out about only
through experience), are:

Separate repositories and Trac instances for each project

Enough user accounts to make the setup usable for your team, together with the capability
to give users (and hopefully user groups) access to different projects and Trac instances

Capability of importing existing SVN repositories

The capability to download a dump of the repository and Trac instance to keep as a safe
backup, or to reuse with another service

There are many reasons why Subversion + Trac makes a good lightweight alternative for version
control and issue tracking. At the very least, Trac allows you to:

Easily browse your changesets (all the files added, modified, or deleted in a single, atomic
commit).

Compare various versions of any individual file.

Create milestones and actually plan your project, and reference concrete commits and files.

54

Chapter 3: Getting Organized

Actually manage your issue queue, again, in direct reference to changesets and individual
files.

Check out David Murphy’s Managing Software Development with Trac and Subversion (2007,
Packt Publishing). For more background on Subversion itself, and good usage and best-practices
details, see the SVN homepage at http://subversion.tigris.org and the on-line documenta-
tion ‘‘Version Control with Subversion’’ (http://svnbook.red-bean.com/), as well as books like
Practical Subversion by Daniel Berlin and Garrett Rooney (2006, Apress).

So as a practical example, here’s what you do:

1. Create an SVN repository and a Trac instance using the tools provided by the service you
have chosen.

2. Decide on the main directory structure for Drupal and for the repository.

3. Import what you have so far as your initial commit to the repository.

4. Install a fresh copy of Drupal on your test site.

5. Get your test site working as a mirror of the latest stable version of your development site by
checking out the initial revision from the repository.

Let’s take a more detailed look at these tasks.

Housekeeping the SVN Repository and Trac Instance
If you happen to choose svnrepository.com as your repository provider, you simply log into your
control panel, fill in a name for the repository (no spaces), and click on the ‘‘Create New Repository’’
button (see Figure 3-2).

Figure 3-2

Figure 3-3 shows how you are then greeted with confirmation and access info for the newly created
SVN repository.

With the control panel, you make any necessary user accounts and grant access to your new repos-
itory, which is now listed as in Figure 3-4.

55

Chapter 3: Getting Organized

Figure 3-3

Figure 3-4

When you click on the Setup Trac link, you are told that Trac was successfully set up and are given
information about how to restrict admin access to the newly created Trac instance should you wish
to do so. You now want to make sure you have jotted down somewhere handy the access path
to check out a working copy from the SVN repository together with the access path to the Trac
instance.

I always place an admin directory for each project on my development machine containing such things
as usernames and passwords, URLs, and other contact information. You don’t want to waste an hour
looking through old e-mails when your client requests access to the repository, or if you need to go
back to an old project.

In this example, the links are always available on the control panel where your repository is listed,
together with other handy features, like a Commit Notification Email List. The full Subversion +
Trac instance entry in your control panel, once it is set up, is shown in Figure 3-5.

Figure 3-5

56

Chapter 3: Getting Organized

Main Directory Structure for Drupal
As will be repeated many times throughout this book, ‘‘There’s more than one way to do it,’’ or Tim
Toady for short (see http://en.wikipedia.org/wiki/There_is_more_than_one_way_to_do_it).
So you may choose to do things differently from this example. Here I use CVS to manage Drupal
core release installation and updating, and SVN for versioning the actual development project itself.
Now, although it is absolutely necessary to version the development on the website (this is actually
everything below the sites directory), it makes no sense whatsoever to version Drupal itself. That
would be redundancy supreme, because best practices really dictate never to change, or hack, the
Drupal core. Furthermore, you had better make sure that you can easily do things like unpack a new
Drupal security release (say, Drupal 5.9) over your Drupal 5.8 site, for example, without having to
worry about any overwriting of files. That is, you should always be able to cleanly upgrade Drupal
releases without affecting your own versioned project.

On Hacking the Drupal Core
Drupal prides itself on being a clean and solid piece of software engineering,
and it is. It is thoroughly extensible on all fronts (modules, themes, etc.), and
there is no reason, unless you have some dire ‘‘exception that confirms the rule,’’
to ‘‘hack the core,’’ as you are forced to do with some other frameworks to
achieve the functionality or look-and-feel you need. See ‘‘Do Not Modify Core
Drupal’’ (http://drupal.org/node/144376). For a humorous, although some-
what advanced and very accurate, description of ‘‘Top 10 Ways a Developer Can
Send a Drupal Project to Hell,’’ see ‘‘The Road to Drupal Hell,’’ by Nick Lewis
(http://drupal.org/node/77487). This is a piece you should come back to after
reading this book.

So, your Drupal installation looks as follows (this is the ‘‘Drupal document root directory’’):

victorkane@mentor:/var/www/workshop$ tree -L 1
.
|-- CHANGELOG.txt
|-- INSTALL.mysql.txt
|-- INSTALL.pgsql.txt
|-- INSTALL.txt
|-- LICENSE.txt
|-- MAINTAINERS.txt
|-- UPGRADE.txt
|-- cron.php
|-- files
|-- includes
|-- index.php
|-- install.php
|-- misc
|-- modules
|-- profiles
|-- robots.txt
|-- scripts

57

Chapter 3: Getting Organized

|-- sites
|-- themes
|-- update.php
‘-- xmlrpc.php

So it is the sites directory, and that directory only, which you need to version,
because all the rest comes straight out of a fresh Drupal release tarball.

Under the sites directory, at this point, if you have been following the Literary Workshop develop-
ment project, you have something like the following:

victorkane@mentor:/var/www/workshop$ tree sites
sites
|-- all
| |-- README.txt
| |-- modules
| | ‘-- cck
| | |-- CHANGELOG.txt
| | |-- LICENSE.txt
| | |-- README.txt
| | |-- UPGRADE.txt
| | |-- content.css
| | |-- content.info
| | |-- content.install
| | |-- content.module
. . .

| | |-- po
| | | |-- cck.pot
| | | |-- da.po
| | | |-- de.po
| | | |-- es.po
. . .

| | |-- userreference.install
| | ‘-- userreference.module
| ‘-- themes
‘-- default

‘-- settings.php

Here, you will be placing all of your installed contributed and custom modules (some people put
contributed modules in a contrib folder and custom modules in a custom folder) and themes.

That leaves a couple of thorny questions: When you make a commit, how do you version the state
of the Drupal database? Second of all, are you going to version your content assets (images, audio
files, downloadable documents)? Let’s deal with the database in a moment. As far as your image
and document assets are concerned, when you upload an image or text document as an attachment
to a page, it will be placed in the files directory (part of basic Drupal configuration), the only one
with Write privileges for the HTTP server user and group (www-data on a Ubuntu server, e.g.).
For this project, let’s opt for not versioning these binary assets with the SVN repository, because
you should be mostly concerned with development (coding and theming) rather than with content
per se.

58

Chapter 3: Getting Organized

Using Version Control
Moving the files directory under the sites directory is an efficient way to easily place image and
document file assets under version control if desired.

Note that the files directory must be writeable by the HTTP server. You can create the directory and
set its permissions by using an FTP client if you do not have access to a secure shell. The following
table shows some common problems and solutions using version control:

Problem Solution

The files directory has already been
created in the Drupal document root.

Delete it (which leads to next problem):

rmdir files

Files directory is non-existent. Create it. Change to the Drupal document root directory. Then:

mkdir sites/all/files

chown -R www-data:www-data sites/all/files

Drupal doesn’t have the faintest idea
where the files directory is.

Logged in as admin (dev in the workshop website), go to
Administer � Site configuration � File system, specify the ‘‘File
system path’’ (no leading slash), then press the ‘‘Save
configuration’’ button (see Figure 3-6).

Figure 3-6

So it is settled: you will place ./sites and all its subdirectories under version control.

59

Chapter 3: Getting Organized

What to Do about the Database
It must be admitted that Drupal has one serious area of difficulty, which will always crop up from
time to time: the database contains content, but it also contains configuration (and darn important
configuration too, as we saw when we configured our business objects with cck) and even (although
we try to keep it down to a dull roar) code snippets, in blocks and panels, as you shall see.

That means that to commit a true snapshot of the project at a given point in time,
you must include the database.

Under development, at least, the database will probably not be too large. Fortunately, the command
mysqladmin allows you to dump it to a text file (of SQL commands) so that it can be placed under
version control relatively efficiently. But you need to find a home for the dumped SQL file somewhere
in the directory tree. Again, there is more than one way to do it, but let’s adopt the convention of
placing the dump at ./sites/all/backup/db/litworkshop.sql. To do so, use the following commands:

mkdir sites/all/backup
mkdir sites/all/backup/db
cd sites/all/backup/db
mysqldump -u dr_workshop -p dr_workshop > litworkshop.sql
Enter password:
#

It’s just that last command you will be needing on an everyday development basis, so be sure
to write it down in a handy place, along with the password (should you forget, the info is in
./sites/default/settings).

Now you have:

#ls -l
total 128
-rw-r--r-- 1 victorkane victorkane 126735 2008-06-10 18:02 litworkshop.sql
#

Using phpMyAdmin
A lot of on-line tutorials tell you how to create a MySQL dump of your database in SQL format,
which can be used later to restore or deploy, but they often omit a very important detail: the
inclusion of DROP TABLE statements so that the file can overwrite existing tables and can be
easily imported without having to empty the database first by hand. First of all, bring up your
Drupal database in phpMyAdmin, then click on the Export tab. Next select the ‘‘Add DROP
TABLE/DROP VIEW’’ checkbox. As shown in Figure 3-7, press the Go button, and save the file to
./sites/all/backup/db in the Drupal filesystem tree.

Later on, when you are checking out the sites file tree from the repository to make a working copy
on your test site, you insert the SQL file back into the database, either with the phpMyAdmin import
facility, or else on the command line, as follows:

ls -l
total 128
-rw-r--r-- 1 victorkane victorkane 126735 2008-06-10 18:02 litworkshop.sql

60

Chapter 3: Getting Organized

mysql -u dr_workshop -p dr_workshop < litworkshop.sql
Enter password:
victorkane@mentor:/var/www/workshop/sites/all/backup/db$

Select this

Go button

Figure 3-7

Notice the use of the mysql command to insert the SQL file into the database, as opposed to the
mysqldump command we used to dump the database to the SQL text file.

Main Directory Structure for the Repository
Now that you have created your repository and have your Drupal instance all set up to import into
the repository for the first time, it’s time to set up the main directory structure for branches and tags
within the repository itself using the command line. Of course, you can achieve the same results
with any of several GUI clients, available for all Operating System platforms.

See ‘‘Subversion UI Shootout,’’ by Jeremy Jones, at www.onlamp.com/pub/a/onlamp/2005/
03/10/svn_uis.html RapidSVN. For Linux, see http://rapidsvn.tigris.org/, and for Mac, see
‘‘Syncro Subversion Client’’ at www.syncrosvnclient.com/.

61

Chapter 3: Getting Organized

The repository directory tree structure can then be verified by using the Trac instance you set up
earlier. Follow the classic setup (see the Reference section for Subversion books and manuals) by
executing the following (all one line; provide password where prompted; the -m switch allows you
to include a log message directly):

svn mkdir http://awebfactory.svnrepository.com/svn/litworkshop/trunk i
http://awebfactory.svnrepository.com/svn/litworkshop/branches i
http://awebfactory.svnrepository.com/svn/litworkshop/tags --username i
username -m "initial repo infrastructure"

Committed revision 1.

Let’s just list the repository to make sure we got what we wanted:

svn list http://awebfactory.svnrepository.com/svn/litworkshop
branches/
tags/
trunk/

As mentioned, you can also check out your ‘‘repo’’ with Trac. Point your browser at the link you
saved earlier (or return to the control panel, and click ‘‘View Trac for the litworkshop repo,’’ or follow
the instructions given by your repository hosting provider), then click on the Browse Source menu
item. You should see something similar to Figure 3-8, showing your initial repository structure.

Figure 3-8

Initial Import of the Codebase into the Repository
On your development box filesystem, navigate to the Drupal document root. Your target ‘‘sites’’
directory is visible as a subdirectory, or ‘‘folder,’’ if we are using a GUI file browsing tool.

Before you do the actual importing, however, temporarily remove
./sites/default/settings.php just this one time because it is not convenient to place
this site-specific file under version control.

Continued

62

Chapter 3: Getting Organized

mv sites/default/settings.php /tmp

Be sure to put it back later; otherwise, your site will be broken! Do:

mv tmp/settings.php sites/default

If you are using the command line, then you simply have to do this one time. SVN
will not commit unversioned files to the repository. However, some IDEs may do so,
so you might want to consider using the SVN propset ignore command (a
command to set properties on folders and files) in this case. Do:

cd sites default
svn propset svn:ignore settings.php .

Don’t forget the trailing dot — it refers to the directory where the property is to be
set. And you’re all set; from then on, SVN will ignore that file.

Now import the sites subdirectory into an appropriate place in the repository as follows:

svn import sites http://awebfactory.svnrepository.com/svn/litworkshop/
trunk/sites i
-m "import roles and initial cut of basic functionality"

This will take a little while, depending on your connection speed. You will see:

Adding sites/default
Adding sites/all
. . .

Adding sites/all/modules/cck/README.txt
Adding sites/all/modules/cck/number.module
Adding sites/all/README.txt

Move your settings file back in, and you are done:

mv /tmp/settings.php sites/default
ls sites/default/
settings.php

When checking out or updating later on, it will not be overwritten because it is not
under version control.

Phew! Now you are going to get the test site working and create a virtual server setup on your
development box to match, so your super website factory is almost set up.

Getting the Test Site Up and Running
Some of this stuff may seem like a bit much, but from my own experience, I really wish someone had
spelled it out from the beginning when I got started, because you are going to be saving bellyache
upon bellyache by doing it right. (I will spare you the ugly details, but gone is the ugly prospect

63

Chapter 3: Getting Organized

of having gotten things just right, and then accidentally ruining everything by installing a new
module the next day: you just use the versioning system to revert back to life as it was
yesterday.)

And again, I am presenting one way of doing it right. Two ways, actually — What you have
to do in a nutshell, and then a more detailed approach suitable for those of you using a VPS
(see http://en.wikipedia.org/wiki/Virtual_private_server) or a dedicated server (see
http://en.wikipedia.org/wiki/Dedicated_hosting_service) you are managing yourself, as
recommended in this book.

In a Nutshell
If you have shared hosting or some kind of managed hosting, first of all, simply set up a subdomain
http://litworkshop.example.com, associated with (redirected to) a subdirectory off your docu-
ment path. You should be able to do this relatively easily with the CPanel or other site-management
panel provided by your hosting provider. Then, create a database for the website, unpack the Dru-
pal tarball into that subdirectory, and from its document root do a checkout of the SVN repository,
as shown below, into the sites directory. Then edit the settings.php with your site-specific settings.
Once you have placed the versioned database snapshot ./sites/all/backup/db/litworkshop.sql
into the database, either from the command line or else by using phpMyAdmin, you are done. Your
client and your staff can access via a separate ftp account to the subdomain directory, and will not
have to have access to your whole site. All of this can be set up via CPanel; simply follow your
hosting provider’s instructions.

But because shared hosting tends to be oversold and suffer from sudden drops in performance
making things difficult even for development and testing purposes, a lot of folks are turning to a
more stable and dependable VPS or even dedicated server, now that the prices of these services are
dropping to quite competitive levels.

Using a Dedicated Server or VPS
If you have a dedicated server or a VPS you are managing yourself (that is really recommended in
this book, and since you are going to get a lot of help on this throughout, your best bet is to do so),
you get to create a system user with the same name as the application, so your client and staff can
have secure shell and sftp access to the application, also without having to have root access to your
server. Again, all of this may look pretty advanced, but the more at home you get with stuff like
this, the more you can leverage Drupal, and you will have a smoother ride and fewer headaches
in the long run. If you can wade on through it, you will find it extremely useful on this and many
projects to come.

So, to do this, you want to create a database for the website, just as you did when you created the
initial environment in Chapter 2. Then (assuming a LAMP–Linux, Apache, MySQL, PHP–server
setup):

1. Logged into your server as root, create a system user and set of user directories to match:

root@example.com:∼ # adduser litworkshop
Adding user ‘litworkshop’ . . .

Adding new group ‘litworkshop’ (1006) . . .

Adding new user ‘litworkshop’ (1006) with group ‘litworkshop’ . . .

Creating home directory ‘/home/litworkshop’ . . .

64

Chapter 3: Getting Organized

Copying files from ‘/etc/skel’ . . .

Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for litworkshop
Enter the new value, or press ENTER for the default

Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [y/N] y
root@example.com:∼ #

2. We still need root permissions for just a little more configuration, and then afterwards the
user litworkshop can take it from there. Logged in as root, navigate to the newly created
user’s directory, and unpack a fresh Drupal tarball there. You should see something like the
following:

root@example.com:/home/litworkshop # ls -l
total 4
drwxr-xr-x 9 1080 1080 4096 2008-01-28 19:10 drupal-5.7
root@example.com:/home/litworkshop #

3. Then do this:

root@example.com:/home/litworkshop # mv drupal-5.7/ public_html
root@example.com:/home/litworkshop # chown -R litworkshop:litworkshop
public_html/

root@example.com:/home/litworkshop # ls -l
total 4
drwxr-xr-x 9 litworkshop litworkshop 4096 2008-01-28 19:10 public_html
root@example.com:/home/litworkshop # mkdir public_html/files
root@example.com:/home/litworkshop # chown www-data:www-data
public_html/files/

4. That’s it. Now log in as the new user. Or, directly from your root session:

root@example.com:/home/litworkshop # su – litworkshop

5. Move the existing plain Drupal sites subdirectory out of there and check out your applica-
tion from the repository:

litworkshop@example.com:∼$ cd public_html/
litworkshop@example.com:∼/public_html$ svn co i
http://awebfactory.svnrepository.com/svn/litworkshop/trunk/sites sites i
--username loginname

Authentication realm: <http://awebfactory.svnrepository.com:80> i
awebfactory.svnrepository.com
Password for ‘loginname’:
A sites/default
A sites/all

65

Chapter 3: Getting Organized

. . .

A sites/all/modules/cck/README.txt
A sites/all/modules/cck/number.module
A sites/all/README.txt
Checked out revision 2.

That’s it.

settings.php File
Now deal with the site-specific settings.php file.

litworkshop@example.com:∼/public_html$ cp sites.old/default/settings.php sites/i
default/

The last command installs a fresh settings.php, which you should then edit (important!) with your
site-specific info. Line 93 or so of sites/default/settings.php should look something like this:

. . .

* Database URL format:
* $db_url = ‘mysql://username:password@localhost/databasename’;
* $db_url = ‘mysqli://username:password@localhost/databasename’;
* $db_url = ‘pgsql://username:password@localhost/databasename’;
*/

#$db_url = ‘mysql://username:password@localhost/databasename’;
$db_url = ‘mysqli://dr_workshop:big_secret@localhost/dr_workshop’;
$db_prefix = ‘’;

1. Remove the useless sites.old subdir, and shove the SQL file into the database:

litworkshop@example.com:∼$ cd public_html/
litworkshop@example.com:∼/public_html$ ls
CHANGELOG.txt INSTALL.mysql.txt MAINTAINERS.txt scripts
UPGRADE.txt
cron.php INSTALL.pgsql.txt misc sites
xmlrpc.php
files install.php modules sites.old
includes INSTALL.txt profiles themes
index.php LICENSE.txt robots.txt update.php
litworkshop@example.com:∼/public_html$ rm -rf sites.old
litworkshop@example.com:∼/public_html$ cd sites/all/backup/db/
litworkshop@example.com:∼/public_html/sites/all/backup/db$ ls -l
total 128
-rw-r--r-- 1 litworkshop litworkshop 126735 2008-06-10 18:51
litworkshop.sql
litworkshop@example.com:∼/public_html/sites/all/backup/db$ grep mysql i
../../../default/settings.php
* $db_url = ‘mysql://username:password@localhost/databasename’;
* $db_url = ‘mysqli://username:password@localhost/databasename’;

#$db_url = ‘mysql://username:password@localhost/databasename’;

66

Chapter 3: Getting Organized

$db_url = ‘mysqli://dr_workshop:workshoppw22@localhost/dr_workshop’;
litworkshop@example.com:∼/public_html/sites/all/backup/db$ mysql-u
dr_workshop -p i
dr_workshop < litworkshop.sql
Enter password:
litworkshop@example.com:∼/public_html/sites/all/backup/db$

2. On a dedicated server or VPS you are managing yourself, someone has to tell the Apache
HTTP server where the litworkshop website application is! This is a job for root, of course,
because you need to deal with system configuration. But it’s quite painless. Log in as root,
and add the following snippet to your Apache configuration file. On an Ubuntu server, we
edit /etc/apache2/sites-enabled/000-default and tack on the following to the end of
the file:

<VirtualHost *>
ServerName litworkshop.textworks.com.ar
DocumentRoot /home/litworkshop/public_html
<Directory "/home/litworkshop/public_html">
Options Indexes FollowSymLinks MultiViews
AllowOverride All

</Directory>
</VirtualHost>

3. Restart the Apache server for the configuration to take effect:

root@example.com:∼ # /etc/init.d/apache2 force-reload
* Reloading web server config apache2 i

2904
i

[OK]root@example.com:∼ #

Of course, this command will vary according to your server OS. Even on Ubuntu, you could have
restarted Apache with:

root@example.com:∼ # apache2ctl restart

On a Centos system, on the other hand, the command might be:

/etc/init.d/httpd restart

Hey, am I done yet? Just about! You just need to ensure now that the whole world knows that the
subdomain http://litworkshop.example.com points to the same IP as the server itself by editing
your DNS server settings (which will vary according to how your VPS or dedicated server or shared
hosting is set up; see Chapter 4 for instructions on that).

You can now be rewarded by pointing your browser at http://litworkshop.example.com and see
that you have successfully installed your test server.

67

Chapter 3: Getting Organized

Awesome. Now, do something gratifying for a while, because then you must come back and repeat
the exact same process on your local development box, ending up with a fresh Drupal installation
with its sites directory checked out as a working copy of your repository, and implemented as a
virtual host also.

You want to make sure that all of your sites are ‘‘Document Root’’ sites (domain or
subdomain URLs). In this way, whether the domain is example.com or
litworkshop.example.com, within a content item you can consistently link to the
files directory where all your images and other assets are stored using
/files/images/pic1.jpg, for example. So you never want to be fooling around with
Drupal installations that are subdirectories, or you can wind up with
inconsistencies in the linking of assets.

At this point, the filesystem on our development box contains the first historical version of your
work. This is what you imported into your repository. But it is not a working copy of the repository,
and on your development box you need to be working with a checked-out working copy of the
repository, so that when you make changes, you commit them to the repository and then update
test and production sites accordingly. So to finish up, you need to create your local working copy,
and then you can simply delete the original files. That may seem like a wicked and heartless thing
to do (and even frightening, so you can save a tar or zip of that if you prefer), but get used to it: It’s
a repository-centric world!

In my case, I made a brand-new home for my local working copy in a www folder under my home
user directory (i.e. /home/dev) and did the following:

dev@laptop:∼/www$ tar xvzf
/media/store/downloads/Drupal/release/drupal-5.7.tar.gz
dev@laptop:∼/www/litworkshop$ mv drupal-5.7/
litworkshopdev@laptop:∼/www$ i
cd litworkshop
dev@laptop:∼/www/litworkshop$ mkdir files
dev@laptop:∼/www/litworkshop$ sudo chown www-data:www-data files
[sudo] password for victorkane:
dev@laptop:∼/www/litworkshop$
dev@laptop:∼/www/litworkshop$ ls
CHANGELOG.txt index.php INSTALL.txt modules themes
cron.php INSTALL.mysql.txt LICENSE.txt profiles
update.php
files INSTALL.pgsql.txt MAINTAINERS.txt robots.txt
UPGRADE.txt
includes install.php misc scripts
xmlrpc.php
dev@laptop:∼/www/litworkshop$ rm -rf sites
dev@laptop:∼/www/litworkshop$ svn co i
http://awebfactory.svnrepository.com/svn/litworkshop/trunk/sites i
sites --username username

68

Chapter 3: Getting Organized

Then, because you already have the database set up from your original work before you imported
everything into the repository, you can simply copy ./default/settings.php over to this working
copy:

dev@laptop:∼/www/litworkshop$ cp /var/www/workshop/sites/default/settings.php i
sites/default/

All that is left is to create a virtual host pointing to the working copy and then use your
/etc/hosts file to fool your browser into thinking that http://litworkshop.mydomain
is a subdomain.

You add a similar Virtual Host snippet to /etc/apache2/sites-enabled/000-default, just as you did
on the test site server, taking into account the location of your local working copy and the name of
your development box (mentor, in my case):

<VirtualHost *>
ServerName litworkshop.mentor
DocumentRoot /home//dev/www/litworkshop
<Directory "/home/dev/www/litworkshop">
Options Indexes MultiViews FollowSymLinks
AllowOverride All
Order deny,allow
Deny from all
allow from all

</Directory>
</VirtualHost>

then restart the Apache HTTP server in the same way.

All that remains is to make that phony subdomain on your development box by editing your
/etc/hosts file in the following way:

192.168.1.7 laptop laptop.mydomain.com litworkshop.laptop

Now you can point your browser at http://litworkshop.laptop, and see the rewards of your
labor. You can work, happy and care-free, on your development box, commit your work, and
update your working copy on the test site in order to painlessly deploy your work where Pam
can see it. Awesome again! Finally.

Building on Your Initial Prototype
Getting back to doing some socially useful work (actually building the site for the client), the main pur-
pose at this point is to build a minimum amount of functionality so that your initial prototype will do
more good than harm to the client as a semantic springboard for her writing the user stories. If Pam has
seen a literary piece and a literary piece critique in the flesh, even in primitive form, then at least you
and she and the rest of the staff on both sides (not to mention the coders and themers and graphic design
people) will be using consistent language to identify content types in the very language of the user sto-
ries. ‘‘Finding a common language’’ is a key part of the process in software development of any kind. So
everyone will be getting off to a good start.

69

Chapter 3: Getting Organized

While we are on the subject of semantics, let’s bear in mind that the Drupal
community uses the term content types to signify business objects. That’s because it
doesn’t know if it’s a web application framework or a content management system,
so it’s both. Not to worry.

On Finding a Common Language
There is, of course, a wealth of literature and resources on this and related soft-
ware engineering topics. On the need for finding a common language, check out
Doug Rosenberg and Matt Stephens, ‘‘Robustness Analysis,’’ in Use Case Driven
Object Modeling with UML, Chapter 5 (2007, Apress) and the ‘‘finding a common
language’’ topic as it is dealt with in the Open Unified Process (‘‘Unified Pro-
cess,’’ http://en.wikipedia.org/wiki/Unified_Process) and the IBM Rational
Unified Process (‘‘Rational Unified Process,’’ http://en.wikipedia.org/wiki/
Rational_Unified_Process), as well as in Scott Ambler’s ‘‘Agile Unified Pro-
cess’’ and the Agile Modeling site (see both ‘‘Scott Ambler’s Unified Process,’’
http://en.wikipedia.org/wiki/Agile_Unified_Process and the Agile Modeling
home page, www.agilemodeling.com/).

So, using the same process in the litworkshop Drupal site as you did in Chapter 2, and working on your
local development box, you’re going to:

1. Create the literary_piece content type.

2. Enable comments for this content type, and show them as being literary piece critiques for
now.

3. Use Drupal’s built-in outlining to create some magazines and books.

4. Set up some forums so that Pam can say which forum structure and which forum topics she
wants.

5. Set up blogs.

6. Put forums, blogs, books and magazines, and a global literary workshop on the primary
menu along with the Join menu item.

7. Prepare for commit (including database dump) and commit to repository, then tag as initial
prototype so if things go badly tomorrow you can go back and bravely set out once again.

8. Deploy to the test site.

Then, talk to Pam!

70

Chapter 3: Getting Organized

Creating the literary_piece Content Type
You create the literary piece content type in exactly the same way as you created the application content
type in Chapter 2. You go to Administer � Content management � Content types, and then click on
‘‘Add content type.’’ Here is a table to serve as a reference in creating just a first cut of this content
type (remember to leave the body field blank so as not to use this deprecated field, not to promote to
front page, and to select ‘‘Publish’’ and ‘‘Create new revision’’ in the Workflow/Default options section;
additionally, make sure that Comments are enabled for this content type and set to Read/Write):

Field Label Machine-Readable
Name

Field Type Widget Configuration Required
Field

Required
Modules

Title title (default) Yes cck

Text literary_piece_text Text Text Field 10 rows Yes cck

Since Pam does not want people overly explaining the texts they submit for critiques, it is entirely possi-
ble that we will not be needing any additional fields.

Importing and Exporting Content Types

Content types implement business objects and allow you to enter records with a
custom-designed form with as many different fields as you like. While this is very
powerful, once I design a content type on one system to hold my data, if I want to use
the same content type on another system, do I have to go through the whole content
type creation process again?

This is not necessary. Did you know you can export and import content types to and
from text files?

To do so, make sure that the Content Copy module (already present as part of the CCK
package) is enabled (Administer � Site Building �Modules — CCK section) and that
your admin user dev has the necessary permissions (Administer � User management
� Access control — Node module — Administer content types).

Then, for example, in order to import the Chapter 3 version of the file literary_piece.txt
from the Leveraging Drupal website to avoid having to create this content type
manually, you would go to Administer � Content management � Content types, and
click on the Import tab. Leaving the Content type dropdown list on <Create>, paste
the contents of the text file into Import data, as shown in the figure below, and click on
the Submit button.

Continued

71

Chapter 3: Getting Organized

Enabling Comments for the literary_piece Content Type
Next, you want to submit a couple of literary pieces and enter a few critiques of other pieces. Still logged
in as user dev, do the following:

1. Create a couple of test member users, named, aptly enough, James and Joyce.

2. Set permissions for the Workshop Member role.

3. Log in as James and create two pieces.

4. Log in as Joyce and create two pieces.
72

Chapter 3: Getting Organized

To do this, you want to follow these steps:

1. Go to Administer � User management� Users, and click on the ‘‘Add user’’ tab.

2. Fill in the Username field with james, and provide a valid e-mail address and a suitable
password. Select the role ‘‘Workshop Member’’ and ‘‘Create new account.’’ Repeat the pro-
cess for joyce.

3. To set permissions for the Workshop Member role, go to Administer � User management �
Access control, and select the following permissions:

Module Permissions

Comment module Access comments

Post comments without approval

Node module Access content

Create literary_piece content

Edit own literary_piece content

View revisions

4. Click on ‘‘Save permissions.’’

5. Now on the Navigation menu (titled dev since you are logged in as dev), click on the ‘‘Log
out’’ link. Then log in as user james, and click on ‘‘Create Content.’’ Now, user james has the
option to create Applications (as do even unauthenticated users) and Literary Pieces.

6. Click on the Literary Piece link. In order to fill in the title and the Text body, you’re going to
avail yourself of the marvelous Lorum Ipsum site, which provides Latin dummy text. (See
www.lipsum.com/. This site explains the history of Lorem Ipsum apart from limitless Latin
dummy text creation!) Quickly hit Submit, and then create another. Log out and create two
literary pieces logged in as user joyce.

7. Log in as pam to survey your current status. Click the Content option from the left-side nav-
igation menu. Pam can survey the content items created so far, what types they are, on what
dates they were created, and who created them, as shown in Figure 3-9.

So far so good. Let’s move on.

Creating Some Magazines and Books
Let’s get the Publisher role into the act. Before you do this, you need to make sure the book module is
enabled, because this allows for the creation of ad hoc hierarchical ‘‘publications’’ consisting of book
pages. Follow these steps:

1. Log in as dev, and go to Administer � Site building �Modules. You can see that Drupal
ships with quite a lot of core modules, which can be optionally enabled as per requirements.
In the Core–Optional section, select Book, and then click on the ‘‘Save configuration’’ button.

2. Still logged in as dev, go to Administer � User management � Users, and click on ‘‘Add
user.’’ Create a Publisher called alfred, remembering to assign him the role of Publisher.

73

Chapter 3: Getting Organized

3. To set permissions for the Publisher role, go to Administer � User management � Access
control, and select the following permissions for both the Workshop Leader and Publisher
roles:

Book module (check all permissions for role admin as usual)

Create book pages.

Create new books.

Edit book pages (Workshop Leader only).

Edit own book pages.

Outline posts in books (Workshop Leader only).

See printer-friendly version (all roles, for now).

4. Click on the ‘‘Save permissions’’ button.

Figure 3-9

A Word on Core Modules
Core modules are modules shipped with Drupal. (See http://drupal.org/node/
937#module for a precise definition of this independently packaged add-on ele-
ment of software code that extends Drupal’s functionality.) They are separated

74

Chapter 3: Getting Organized

into two groups, those that must be enabled in order for Drupal to work at all
(Core–Required), and those that may be optionally enabled (Core–Optional), like
Book, Forum, and Blog. Additionally, there are third-party modules, also called
contributed modules, like the CCK module you have already added on to litwork-
shop, which you can download from the Drupal site, install, and also enable (see
http://drupal.org/project/Modules).

If you now log in as alfred, you can create a magazine called Magazine. Hit ‘‘Create content,’’ click on
the Book page link, enter Magazine as the title, and then fill in some Latin for the body and click on the
Submit button. On the bottom of the page, click on the ‘‘Add child page’’ link. Fill in Article one as the
title (notice that Magazine is automatically selected as the hierarchical Parent), and then some more Latin
as the body. After clicking on the Submit button, click on the Up link, and again click on the ‘‘Add child
page’’ link to create an Article two and then an Article three book page. After clicking on the Up link again,
you should have something like Figure 3-10 — a magazine containing articles! Great for the prototype
anyway.

Figure 3-10

75

Chapter 3: Getting Organized

Drupal even has built-in content outlining capabilities off-the-shelf. First of all, when you view any
content type, you can also add it to any existing book by clicking on the Outline tab. Let’s suppose that
Pam has made a book called Literary Workshop Hall of Fame. And she likes a certain literary piece so much
that she wants to include it in her book. She can.

Suppose Pam logs in and goes to Administer � Content Management � Content. She filters the content
listed there in order to list only the most recent literary pieces (select the radio button type, choose ‘‘Lit-
erary Piece’’ from the dropdown list, and click on the Filter button). She can view any literary piece
in another window (or tab if she is using a recent browser) while maintaining this view, as seen in
Figure 3-11. Notice how the filter is now set to Literary Piece (it is persistent during the sessions, so it
stays that way until Pam hits the Undo button). So Pam can check out all the new pieces to see if the
latest crop has any hidden gems.

Figure 3-11

And she finds one. james’s Nulla facilisi shows real promise and deserves to be inducted into the Hall of
Fame Magazine. You already know how to create books: you simply create a book page from the ‘‘Create
content’’ link, and then start adding child pages to it. Go ahead and just create the top-level parent page
for the new magazine, then view the Nulla facilisi Literary Piece. Just to the right of the View and Edit
tabs, there is an Outline tab (if there isn’t, Pam doesn’t have the right permissions as described earlier).
See Figure 3-12. Pam clicks ‘‘Outline,’’ selects Hall of Fame Magazine from the Parent dropdown list, then

76

Chapter 3: Getting Organized

clicks on the ‘‘Add to book’’ outline button. She then clicks on the Up link to see the new magazine with
its initial article.

Figure 3-12

It’s that easy to create a magazine in Drupal. We’ll come back to this in a little bit. But first, you have
a bigger problem to solve. Clicking on the ‘‘On-Line Literary Workshop’’ link at the top of the
page, or else on the Home link in the breadcrumb, takes us to the Home page. There you have a bit of
a shock.

The front page is filled up with all kinds of content, as if it were a blog. This is because Drupal by default
sends, or promotes, certain kinds of content to the front page. This is great for some applications, like a
blog, but doesn’t jive with our understanding, even at this early stage, of Pam’s requirements. Fortu-
nately, Drupal allows you to configure this behavior for each content type:

1. Log in as dev, go to Administer � Content management � Content types, and click on the
Edit link corresponding to the Book page content type.

2. Near the bottom of the page, in the Workflow section, de-select the ‘‘Promoted to the front
page’’ option, and while you’re at it, select ‘‘Create new revision’’ to allow you to take
advantage of Drupal’s built-in content version control system.

77

Chapter 3: Getting Organized

3. Click on the ‘‘Save content type’’ button. This should look familiar because it is what you did
for both Application and Literary Piece content types.

4. While you’re here, make sure that these settings apply to all content types, including blogs,
and leave the story content type alone as one whose content will automatically be promoted
to the front page, in case you need a quick edit at some point along these lines.

5. Returning to the front page, the first impression is that you haven’t solved the problem at
all. That is because changing the configuration of a content type will affect nodes created
from that point on, but is not retroactive to nodes created before then. Those still reflect the
configuration in effect at the time of their creation (they are clones of the configuration at that
point of time).

A node is an independent piece of content based on any content type (page, story, blog entry, etc.)
entered by a user and stored in the database. It can be considered the basic atom of content in Drupal.

So do you have to go in and de-select the front page promotion option from each one individually? That
would be a lot of work, and error-prone too. Fortunately, Drupal allows you to deal with this problem:

1. Simply go to Administer � Content management � Content, and set a filter for book pages
(as you did before for Literary Pieces).

2. Just below the ‘‘Show only items where’’ filter section, you can see the ‘‘Update options’’
section. Choose ‘‘Demote from front page’’ from the dropdown list, and select the check-all
checkbox on the left-hand side in the content listing table header (see Figure 3-13). Then you
simply click on the Update button.

3. Go back to the front page to test whether the problem is solved. There you should just see the
Welcome page, as before. To test that your new configuration settings are correct, go ahead
and log in as pam again, hit the books link from the navigation menu, click ‘‘Hall of Fame
Magazine,’’ and then click on the ‘‘Add child page’’ link. Type in Second piece for the title
and some Latin filler for the body, and then click on the Submit button. Now go to the front
page just to be sure your new configuration for book pages is in effect and only the Welcome
page is seen there. Awesome.

Setting up Some Forums
As an exercise, go ahead and follow the Drupal handbook instructions (‘‘Forum: create threaded discus-
sions’’: http://drupal.org/handbook/modules/forum) for setting up a forum for magazine publishers
(you will need to enable the optional core module just as you did for the book), and then for flash fiction,
Haibun, and Sonnet aficionados.

Make use of forum containers when planning your forum structure. For example, in
this context, you might want a General and a Literary Forms forum container, and
then specific forums within each of those.

78

Chapter 3: Getting Organized

Figure 3-13

Later Pam will be able to go to Administer � Administer � Content Management � Forums and carry it
on after the first meeting.

If you followed the instructions, you should see something like Figure 3-14. Notice the use of Containers
and Forums.

Setting up Blogs
Blogs are also enabled by activating an optional core module. For prototyping purposes, enable blogs for
all authenticated roles, with comments enabled also:

1. You enable the Blog module from Administer � Site building �Modules as usual, and then
set permissions as before at Administer � User management � Access control.

2. Set ‘‘edit own blog’’ permissions and ‘‘access comments,’’ ‘‘post comments,’’ and ‘‘post com-
ments without approval’’ for all authenticated roles.

79

Chapter 3: Getting Organized

3. Just one more little thing: go to Administer � Content management � Content types, edit
the Blog entry content type, and de-select the ‘‘promoted to front page’’ option.

4. Log in as alfred the Publisher, and write a couple of entries; log in as pam, and write a couple
of entries.

5. Click on the ‘‘My blog’’ link on the Navigation menu, and then on ‘‘Post new blog entry.’’

Figure 3-14

By now you should be starting to feel more at home around Drupal.

Completing the Primary Menu
You’ve really got the initial prototype coming together! Now, one of the great things about Drupal is how
it separates functionality from presentation, and within that, esthetics from navigation. In fact, there is
a whole completely configurable and extremely power Navigation menu system built right into Drupal,
and you’re going to leverage that now to tie your package up, all ready to show to Pam!

80

Chapter 3: Getting Organized

Let’s set up something like this:

Main Menu
Blogs
Forums
Books and Magazines
Join

Log in as dev, and go to Administer � Site building �Menus. The first menu listed on the page is called
Primary links, and it is the menu including the menu item Join! you have already placed there. Just above
the table listing Join!, click ‘‘Add item.’’ Fill in the data for Blogs, as per the following table, and then
insert the other items in the same way.

Title Description Path (No Lead-
ing/Character)

Parent Item
(Automatically
Selected)

Weight

Blogs On-Line Literary
Workshop Blog
Central!

Blog Primary links 0

Forums Discussion
forums

Forum Primary links 2

Publications On-line books
and magazines

Book Primary links 4

Join! Join our literary
workshop

Node/add/
application

Primary links 6

Test out your new Navigation menu. It should look something like Figure 3-15, which is viewing Blog
Central.

Committing to the Repository and Tagging the Initial
Prototype

Well, you have certainly done a good bit of work. Enough already. You are definitely at a point where
you would want to commit your work to the repository and call it a day. You will be doing this a lot,
every time you finish an atomic piece of work in the future (roughly corresponding to each section or
subsection in this chapter). So let’s just review these three quick easy steps:

1. Dump the database: You can do this via phpMyAdmin if the database isn’t too big (and it
won’t be for quite a while, certainly during development), or else from the command line
(which is actually the easiest way and is recommended in this book). In case you need a
refresher, refer to the section ‘‘Main Directory Structure for the Repository’’ above. The main
thing is to wind up with litworkshop.sql in ./sites/all/backup/db.

81

Chapter 3: Getting Organized

Figure 3-15

Clear the cache before dumping the database in order to commit a working copy
snapshot to the repository.

2. Navigate to the ./sites directory: # cd /path-to-working-copy/sites.

3. Commit to the repository. It’s been a while, so let’s see the status of the working copy as
compared to the repository:

$ svn status
? default/settings.php
M all/backup/db/litworkshop.sql
$

82

Chapter 3: Getting Organized

Yes, all your work, in terms of both content and configuration, has been persisted in the database itself.
Commit:

$ svn commit -m "prototype to show Pam for initial feedback andi
requirements capture"

Sending all/backup/db/litworkshop.sql
Transmitting file data .
Committed revision 4.
$

One way to do this quickly right now is to log in as dev, go to Administer � Site
Building �Modules, and hit the Submit button as if you were enabling a module.
Later, you will see other alternatives.

Deploying to the Test Site
By this time your hosting provider, whoever it is, has had ample time to enable your secure shell. So you
have just four steps to deploy this version to the test site so Pam can see it:

ssh is an abbreviation, and also the command for, a secure shell. On Linux, you’ve already
got that. On Windows, use putty, an excellent Open Source solution. (For putty, see
www.chiark.greenend.org.uk/∼sgtatham/putty/. For background on ssh, see http://
en.wikipedia.org/wiki/Secure_Shell.)

1. Log into the Test Site — On Ubuntu, or any other Linux distribution, or on a Mac OS termi-
nal, just do:

$ ssh litworkshop@example.com.com.ar
Password:
Linux textworks.com.ar 2.6.23.17-linode43 #1 Wed Mar 5 13:57:22
EST 2008 i686

litworkshop@example.com:∼$

If this is your first time connecting to that host, you will be asked to confirm saving the
remote site information in the local database. Just say Yes.

If for some reason you are on a Microsoft Windows system and trying to do this, just use
putty (see above note). Just download it (e.g., to C:\Program Files\putty\putty.exe) and
double-click on it. Fill in the hostname where your test site is located. Click on the SSH radio
button, and the Port filed will automatically change to 22. Use this unless you know other-
wise. If you want to save this session info for the future, fill in a Saved Sessions name, and
click on the Save button. Then click on the Open button.

If this is your first time connecting to that host, you will be greeted with a scary warning
window entitled, ‘‘PuTTY Security Alert,’’ saying ‘‘WARNING — POTENTIAL SECU-
RITY BREACH!’’ which gives a pretty darned good explanation of the fact that PuTTY
has no idea if you are connected to the server you want to be connected with or to some
other server just pretending to be that server. Since we expect this to happen the first time,
again, we just say Yes.

83

Chapter 3: Getting Organized

The terminal window appears and prompts for the username with ‘‘Log in as: ‘‘.’’ Fill in lit-
workshop if you have followed the instructions earlier in the chapter, or else whatever is the
appropriate user. You are then prompted for the Password, and then you are in and should
have a terminal window looking something like Figure 3-16 (which also shows the whole
sequence necessary for deployment to the test site).

Figure 3-16

2. Navigate to /path-to-working-copy/sites —
litworkshop@example.com:∼$ cd
public_html/sites.

3. Update to Latest Version from the SVN Repository

litworkshop@example.com:∼/public_html/sites$ svn up
U all/backup/db/litworkshop.sql
Updated to revision 4.
litworkshop@example.com:∼/public_html/sites$

4. Load the Database with the Current Database State — Grab the details of the mysql
database you are using, or else locate that info right in the ./sites/default/settings.php file.
(That’s why you set its permissions so it cannot be seen by anyone except the logged-in
user.)

litworkshop@example.com:∼/public_html/sites/all/backup/db$ grep mysql i
../../../default/settings.php
* $db_url = ‘mysql://username:password@localhost/databasename’;
* $db_url = ‘mysqli://username:password@localhost/databasename’;

#$db_url = ‘mysql://username:password@localhost/databasename’;
$db_url = ‘mysqli://dr_workshop:workshoppw22@localhost/dr_workshop’;

Load the database with the database state.

litworkshop@example.com:∼/public_html/sites/all/backup/db$ mysql -u dr_workshop -p i
dr_workshop < litworkshop.sql

84

Chapter 3: Getting Organized

Enter password:
litworkshop@example.com:∼/public_html/sites/all/backup/db$

Now point your browser at your test site and enjoy the fact that you have deployed your current
state-of-the-art quickly and accurately!

Getting Initial Feedback from the Client
Because the bottleneck now is getting the client to confirm the Roles and to start writing some short,
pithy user stories, contact your client on Skype and look over the site together. The discussion at this
point is basically an interview, wherein you first show the list of users and their roles and ask if any
important role is missing. Then you confirm the first cut list of user stories. You struggle against ‘‘user
story explosion,’’ making sure to keep to the main ones only. Then you confirm the domain model. Then
you compare that to the content types that have actually been created in accordance with the domain
model. Pam finds out how to create content types here using the basic navigation interface (Drupal
menu: Create content, Content). And you finish up the meeting by discussing the next step to be taken,
namely, that of writing up all the user stories!

Pam enjoyed the fact that there was something up and running so quickly. She logged in, checked out
the site, and then clicked Roles, which we have discussed. She agreed that the list was indeed exhaustive
for the initial website launch, so we were all set to go on that score.

We then checked over the user stories (I had published the first cut list in a blog on the site itself) and
got right down to work. In a few days, we had the whole set written and ready to finish off together as a
collaborative effort between developer team and client.

Summary
You did some real trapeze work in this chapter. First, you imported a snapshot of your existing Drupal
website prototype into a spanking new SVN version control repository, after straightening out your
directory structure for both the filesystem and repository. Then you checked out the initial snapshot of
your work directly to the test website, where you created a user and a filesystem home for the website
and configured everything, including the MySql database and the Apache HTTP server so that your
checked-out working copy was actually up and running as a mirror of what you had done on your
test box.

Then you got so confident about what you were doing that you up and erased the original work on
your development box and checked out a more permanent working copy as home for your development
efforts, and got that working too.

You then turned your attention to the job at hand and really leveraged off-the-shelf Drupal and set up
a more-than-adequate working model to serve as a springboard to requirements captured from your
client as both of you navigated a fully functional prototype while carrying out that interview. The model
went a long way toward laying the basis for a common language to be used by all those working on site
development, and you were able to sign off on the list of Roles and User Stories. After that, Pam was able
to finish writing the first draft of all the remaining user stories in just a few days.

85

Getting up to Speed

At this point, the Elaboration phase is looking like Figure 4-1:

Pam, the client, and Victor, the developer, have been applying an agile approach to the development
of the On-line Literary Workshop website application in the last few chapters. Agile development
demands the highest possible level of client participation in the development process itself, so
Pam has had the task of writing the User Stories, which describe the functionality which needs to
be implemented. Once the User Stories have been completed, perhaps with some help from the
developer, the process can move forward and a fully functional prototype can be set up. So let’s get
right down to it.

Finishing the User Stories with the Client
User Story 4-1 (which follows) is the first user story Pam wrote and revised after we went over
the list (the complete set is included in the downloadable chapter resources ZIP file). We struggled
to keep the user stories as short as possible, noting that it is better to have more stories than any
longish stories. And we agreed that at the same time we should try to avoid ‘‘user story explosion,’’
only adding more if they are absolutely necessary.

More Information on the First User Story

For general background on the first user story, see http://en.wikipedia.org/wiki/
User_story and the references listed there, particularly www.extremeprogramming.org/
rules/userstories.html. In this book, I am using the general approach
found in the book User Stories Applied by Mike Cohn (2004, Addison Wesley
Professional), with the concise ‘‘Card,’’ ‘‘Conversation,’’ and ‘‘Confirmation’’
sections in Chapter 1 of that book that are attributed to Ron Jeffries, ‘‘Essential
XP: Card, Conversation, and Confirmation,’’ XP Magazine (August 30, 2001).

Chapter 4: Getting up to Speed

User Story 4-1: Workshop Leader Can Approve Applica-
tions to Join the Workshop

Card
The Workshop Leader can list all the outstanding membership applications and
approve, reject, or postpone action on them.

Conversation
Victor notes that the application corresponds to the Application content type
and that it might be an application for membership as Publisher or Workshop
Member.

Pam explains that membership applications may be new, approved, rejected, or
postponed.

Pam says it would be nice if applications could be approved, rejected, or post-
poned with a single click and without leaving the Membership Application
Administration page.

Victor says this should be a subordinate user story and that it should be post-
poned to a later rather than earlier iteration.

Pam agrees that, for the first iteration, this user story should be included, even
if it takes extra clicks at first.

Confirmation

Test 1 — When the Application content type is created, a Drupal user must be automatically
created at the same time.

Test 2 — When the Application is set to Approved, the Drupal user must be automatically
activated, and an e-mail must be sent notifying the new user and giving her access and login
links.

Test 3 — Workshop Members and Publishers can be approved in just a couple of clicks.

Create an initial environment

Whip up the initial prototype

Get initial feedback from the client

Finish the user stories with the client

Plan the project

Work on the architectural baseline

Get the team organized and with the program

Figure 4-1

88

Chapter 4: Getting up to Speed

Planning the Project
Now all the functional requirements are in, divided into a sequence of user stories. These actually become
the raw material for the planning process:

1. Estimate each user story in terms of how many good days each one requires for
implementation.

2. Estimate the team velocity (how many user stories can be implemented in a 2-week itera-
tion, or sprint) of the development team and the client. This calculation will take into account
whether or not they have worked together previously, how much confidence and trust exist
among them, and so on.

3. Conclude how many iterations you need to get the project done.

4. Assign each user story to an iteration, based mainly on the client’s desires, but also on the
need to mitigate risk by assigning ‘‘risky’’ user stories (those that have a high impact on
architecture, because choices will be made during the course of their implementation that
might affect how a large part of the rest of the project gets done: these have to be dealt with
as early as possible, in one of the early iterations).

Doing It on the Dining Room Table
What you really have to play with is a deck of cards.

Think of every user story as a proverbial 3 × 5-inch card. In fact, they should be (or some printed-out
variation). Do the following:

1. Shuffle the cards, and spread them out on the table.

2. Order the cards in terms of which ones Pam wants implemented first. Now divide the cards
into five to six groups, in order. You have your first cut of iteration planning.

3. Review all the cards, starting from the last group, and check and see if there aren’t some
user stories that have been placed in a relatively late iteration (group of user story cards)
that really need to be dealt with sooner rather than later.

These are the items that may not be ‘‘hot’’ but are high in risk and architectural impact. The whole idea of
implementing the user stories in iterations is basically to show Pam frequent releases so that feedback and
test results can show you where you are really standing, and also to be able to have early implementation
act as prototyping aimed at confirming the architecture upon which you are basing the project.

Let’s take Pam’s need for single-click approval/rejection of membership applications. What is the archi-
tectural basis for this going to be?

You guessed it: While you are planning the project you are also working on the architectural baseline in
parallel. It is impossible to really separate one activity from the other.

In other words, does any existing Drupal functionality support this? If not, is there any existing Drupal
functionality that could support it if it were tweaked in some way? Just how much tweaking might be

89

Chapter 4: Getting up to Speed

necessary? Are there contributed Drupal modules that could support what you are trying to do? What
do you know about the reputation of these modules, in terms of doing the job well, in terms of resources
needed, in terms of impact on other modules we might be using?

These questions need to be answered sooner rather than later.

Doing It with Trac
So you have your clumps of user stories on the dining room table. To move on, bring in your laptop,
and document this in a usable fashion. If you decide to use Trac (part of the SVN repository hosting you
began to use in Chapter 3) to do this, you will get a few nice surprises: Trac will enable you to actually
do the planning also.

Figure 3-7 showed your source code tree, accessed by clicking on the Browse Source menu item. Log into
your Trac instance now, if you have one, or just watch and learn — it will be useful anyway:

1. Click on the Roadmap menu item. You’ll see a listing of four Milestones (see Figure 4-2).

Figure 4-2

90

Chapter 4: Getting up to Speed

2. Click on the milestone1 link. You should see something like Figure 4-3. Click on the ‘‘Edit
milestone info’’ button shown there.

3. For now, just change milestone1 to Prototype, fill in a due date approximately 15 days
away, and then click on ‘‘Submit changes.’’ Then click on the Roadmap again, and edit the
remaining three milestones, labeling them Beta, Final release, and Launch, due within
30, 45, and 60 days, respectively. Trac will order your milestones by due date, and your
roadmap should now look like Figure 4-4.

4. Now, going to the main menu bar once again, click ‘‘New Ticket.’’ In the ‘‘Short summary’’
field, enter Workshop Leader can approve applications to join the workshop, choose
‘‘task’’ from the Type dropdown list. In the ‘‘Full description’’ text area, enter the Card,
Conversation, and Confirmation sections, and in the ‘‘Ticket Properties’’ section, choose
Prototype. The result will look like Figure 4-5.

5. Click on the ‘‘Submit ticket’’ button. The task appears rendered on a yellow background and
can be edited further down the page. Files can be attached, changes can be added, and ticket
properties can also be altered. The interesting thing is that the ticket can be linked to any
existing milestone. So at this point the plan is to add the remaining 19 user stories, divid-
ing them up among the various milestones. The Prototype milestone will contain the first
five user stories, the Beta Milestone the next five, and so on. After adding the 20 user sto-
ries as tasks allocated over the four Milestones, your Roadmap should look something like
Figure 4-6.

Figure 4-3

All that’s left now is to see if any of the user story implementation tasks scheduled for one of the later
iteration milestones should be brought forward to an earlier one. Click on the ‘‘View Tickets’’ menu item,
and then click on the ‘‘Active Tickets’’ link (Report {1}). This list of all active tickets can be sorted by any
of the headings. Click on the ‘‘Ticket heading’’ link to get a clean listing ordered by ticket number. Let’s
study the plan as it appears in Figure 4-7.

91

Chapter 4: Getting up to Speed

Figure 4-4

The last two tasks are:

‘‘A Webmaster can administer the website configuration.’’

‘‘A Webmaster can install new updates and functionality.’’

Actually, these tasks have more to do with training than implementation, since Drupal supports that
functionality off-the-shelf, but the site needs to be handed over to the new webmaster, and experienced
website developers know that that is work too! Of course, some additional Launch Milestone tasks need
to be added in, having to do with deployment, so you should add those in immediately.

In terms of the rest of the planning, the question you have to ask yourself now is, ‘‘Are there any tasks
allocated to the later iterations that represent leaving too much risk of architectural impact in the imple-
mentation of unknowns until it might be too late to handle adequately, for example, going with a
mitigation plan B?’’

Looking over the list, one might get the impression that there is some ‘‘easy stuff’’ earlier on, and ‘‘harder
stuff’’ to be implemented later on, and that things perhaps should be the other way around. However,
you do want to get started with all of the architectural, navigation, and usability components from the

92

Chapter 4: Getting up to Speed

ground up. As you see in the next section, which deals with the architectural baseline that should be
set as early as possible in the project after trying out different candidate alternatives, the architectural
components are made up of Drupal modules in Drupal core and those contributed by third parties, as
well as custom-coded modules you may have to write yourself.

Figure 4-5

You will also be adding bugs (issues) and enhancements as tickets. (Trac will allow you to create your
own issue categories.) Anyone (staff or client) can add bugs when an acceptance test fails. And anyone
can add enhancements (that’s usually going to be the client) as change requests for additional function-
ality not originally provided for in the agreed-upon 20 user story requirements baseline.

For example, Pam had seen some strange URLs being used in the prototype being developed in Drupal,
like ‘‘?q=blog/2’’, and is concerned about whether she will be stuck with URLs like that; she says that
in WordPress, the URL is created right from the title, and there are no weird characters in it either.
So you need to add in enhancement-type issues for ‘‘clean URLs’’ and automatic SEO (Search Engine
Optimization)-friendly paths. And you might as well add those to the first iteration, because clean URLs
are handled right off-the-shelf (although they might require some tinkering with the Apache HTTP server
configuration), and SEO-friendly paths can be generated automatically by the pathauto module.

93

Chapter 4: Getting up to Speed

Organizing Groups of Iterations into Phases
If the complexity of the project so warrants, in order to better orient your devel-
opment process, you could divide the iterations into groups, corresponding to the
Inception, Elaboration, Construction, and Transition phases outlined in Chapter 1.
For example, you could have the first Milestone correspond to the Inception phase;
the second and third to the Elaboration phase; the third, fourth, and fifth to the
Construction phase; and the last to the Transition phase.

Figure 4-8 shows the current state of affairs for each of the Milestones. You have your work cut out
for you.

Figure 4-6

94

Chapter 4: Getting up to Speed

Figure 4-7

Doing It
One of the beautiful things of using an issue-tracking system is that what you have effectively done
is split a complex problem — namely, that of developing and launching a website application — into
bite-sized chunks that can be done at any point. This is actually the beauty of the Agile approach to soft-
ware development itself. A member of the development team can just pluck a user story card from
the (virtual or real) wall and get it done at any time, and a fixed percentage of the whole task gets
accomplished.

Figure 4-8 shows your amended Prototype iteration user story implementation and associated tasks.
Let’s grab one and do it right now. Take: #21 — ‘‘Clean URLs and automatic generation of SEO friendly
paths.’’ These two tasks are, of course, interrelated, so they have been placed on the same ‘‘ticket.’’

95

Chapter 4: Getting up to Speed

Figure 4-8

1. Go to Administer � Site configuration � Clean URLs, logged in as user dev. But wait, when
you go to Administer (http://litworkshop.example.com/?q=admin), you may see an
Administration warning message:

One or more problems were detected with your Drupal installation.
Check the status report for more information.

Administration warning signs may pop up from time to time, which is why you have to be
nimble in Drupal and learn how to mentally stack two or three tasks you might be doing all
at the same time.

2. Click on the Status Report link to see what’s going on. Warnings may appear for one or sev-
eral reasons. A common issue can come from file permissions. On your local development
box, when you created the working copy, perhaps you never attended to the operating sys-
tem permissions regarding the files directory. This problem can carry over if you decided
to place it under version control, in which case you will see the ‘‘File system–Not writable’’
warning in red:

File system Not writable
The directory sites/all/files is not writable. You may need to set the
correct

96

Chapter 4: Getting up to Speed

Directory at the file system settings page or change the current
directory’s
permissions so that
it is writable.

See http://drupal.org/server-permissions for more information.

3. Click the File System Settings page link, and make sure that the directory ./sites/all/files is
writeable for the Apache HTTP server.

This is a Drupal moment: ‘‘Where was I?’’ Get used to it: you must learn to multi-task if you
are going to leverage the power of Drupal and be a Renaissance woman or man into the
bargain.

You were about to implement #21 — ‘‘Clean URLs and automatic generation of SEO friendly
paths.’’

4. So, right, go to Administer � Site configuration � Clean URLs. You’ll immediately notice
that the radio buttons Disabled/Enabled are grayed out. It turns out that you have to per-
form a test first. So click on the ‘‘Run the clean URL test’’ link. The odds are that you will
pass, which will simply result in the radio buttons being freed up, so select ‘‘Enabled,’’ and
click on the ‘‘Save configuration’’ button. Where before you had:

http://litworkshop.example.com/?q=admin/settings/clean-urls

you now have

http://litworkshop.example.com/admin/settings/clean-urls

O Brave New SEO-friendly World!

But wait, you’re not done yet.

5. Go to Administer � Content management� Content, and mouse over the Content items. All
of them have paths ending in /node/5 or /node/10. Issue #21 says to implement SEO-friendly
paths.

Fortunately, there is a contributed Drupal module of excellent quality and reputation, wonderfully main-
tained, called pathauto. Its home page is http://drupal.org/project/pathauto. Download the most
recent, stable version for the Drupal release you are working with, and unpack it into the {path to Drupal
root}/sites/all/modules directory, just as you did for the cck module in an earlier chapter.

This time, let’s start a new habit of always reading the README.txt file that accompanies well-
maintained contributed modules. One of the things it explains, apart from how to configure this very
flexible and powerful module, is that it depends on the core module ‘‘path’’ also being enabled, and it
also requires the Token module and recommends a couple of others. This is getting complicated very
quickly. Another Drupal moment. Not to worry. Let’s just do this:

1. Download and unpack two more modules: the Token module (because pathauto requires
it; located at http://drupal.org/project/token) and the Global Redirect module (abso-
lutely necessary to guarantee that you keep your path aliases’ housekeeping in-line with
what search engines expect; located at http://drupal.org/project/globalredirect).

97

Chapter 4: Getting up to Speed

2. Once these two modules are downloaded and unpacked under the ./sites/all/modules
directory, go to Administer � Site building � Modules, select the Path module in the
Core — Optional section, and click on the ‘‘Save configuration’’ button.

3. Then, in the Other section, the Global Redirect, the Pathauto, and the Token modules, click
‘‘Save configuration.’’

4. Now go to Administer � User management � Access control, and enable the following
permissions:

Module Permissions Roles

Path module Administer URL aliases
Create URL aliases

Admin, Webmaster
Admin, Publisher, Webmaster, Workshop
Leader, Workshop Member

Pathauto module Admin pathauto
Notify of path changes

Admin, Webmaster
Admin, Webmaster

There is no configuration necessary for the Global Redirect and Token modules. Let’s finish
up by quickly creating an initial configuration for Pathauto and making that configuration
retroactive to existing content.

5. Go to Administer � Site configuration � Pathauto (http://litworkshop.example.com/
admin/settings/pathauto in our spanking new clean URL system).

Instead of getting dizzy for the moment with all the options, bells, and whistles you can
fine-tune later (especially after Pam gets a chance to see what’s going on with this), let’s just
do this:

6. Open the Blog Path Settings section, select ‘‘Bulk generate aliases for blogs that are not
aliased,’’ and click ‘‘Save configuration’’ at the bottom of the page.

You should see something like this at the top of the page:

The configuration options have been saved.

Bulk generation of user blogs completed, 6 aliases generated.

7. Now, hit the Blogs menu item you configured earlier, which takes you to http://
litworkshop.example.com/blog, and hit the link to Pam’s blog. You will find that takes
you to http://litworkshop.mentor/blogs/pam. Awesome. Now, hit one of the posts:
http://litworkshop.mentor/node/17. Not awesome.

8. Back at Administer � Site configuration � Pathauto, open up the ‘‘Node Path Settings’’
section. Leave the default path pattern as is for the time being. In the ‘‘Pattern for all Blog
entry paths’’ field, enter:

blog/[author-name-raw]/[title-raw]

98

Chapter 4: Getting up to Speed

9. In the ‘‘Pattern for all Literary Piece paths’’ field, enter:

texts/[author-name-raw]/[title-raw]

10. You can open up the Replacement patterns section to see all the options available (courtesy
of the Token module). Now, select the ‘‘Bulk generate aliases for nodes that are not aliased’’
checkbox, and click ‘‘Save configuration.’’

Awesome, yes! Checkout Administer � Site building � URL aliases to survey the results of your
pain and labor: what was node/15 is now blog/alfred/alfreds-second-entry; what was node/6 is now
texts/joyce/sed-consectetuer-nisi-eget-ligula. Awesome again. Now you need Pam’s feedback in the form of
an acceptance test, so you can truly complete the task.

Committing, Deploying to Test, Testing, Tracking
Go ahead and commit your work to the SVN repository, so that all your work can then be deployed to
the test site, where it can be tested by developers and clients alike, and then tracked (e.g., bugs or change
requests can be raised as tickets in Trac).

1. Click on the ‘‘Save configuration’’ button in Administer � Site building �Modules to clear
the cache, and then dump the database to ./sites/all/backup/litworkshop.sql.

2. Change the directory to ./sites, and check the svn status:

$ cd sites
$ svn status
? default/settings.php
M all/backup/db/litworkshop.sql
? all/modules/token
? all/modules/globalredirect
? all/modules/pathauto
victorkane@mentor:∼/work/AWebFactory/Wiley/litworkshop/sites$

3. You don’t want the settings file under version control, but you should add the contributed
modules. Even though they are versioned with CVS in the Drupal repository, a true snap-
shot of what you have must contain the contributed modules you actually have installed,
with their current version, and so on. So you add those to the repository and commit:

$ svn add all/modules/token/ all/modules/globalredirect/
all/modules/pathauto/
A all/modules/token
A all/modules/token/po

. . .

A all/modules/pathauto/pathauto_user.inc
A all/modules/pathauto/INSTALL.txt
A all/modules/pathauto/pathauto_taxonomy.inc

99

Chapter 4: Getting up to Speed

$
$ svn commit -m "Initial implementation #21 Clean URLs and automatic \
generation of SEO friendly paths"
Sending all/backup/db/litworkshop.sql
Adding all/modules/globalredirect

. . .

Adding all/modules/token/token_taxonomy.inc
Adding all/modules/token/token_user.inc
Transmitting file data
Committed revision 6.

Notice that ‘‘#21’’ is included in the commit message for revision 6. This will allow you to
navigate directly from the log message to the issue documentation and constitutes a truly
minimalistic yet thorough implementation of what CMMI calls bidirectional traceability of
requirements.

4. Click ‘‘Browse Source in Trac’’ and then on the Revision Log link just under the menu bar
on the right-hand side. You can see the expression #21 as a link in the revision 6 entry.
Click on it, and you are taken directly to Ticket #21! In the Add/Change #21 text area, type
in Initial implementation r6, and near the bottom of the page in the Action section, select
‘‘Resolve as worksforme’’ (Pam can reopen it with the Acceptance Test later on). Click
‘‘Submit changes.’’

5. Now, ‘‘r6’’ is also a link. Click on it, and you are taken to the changeset (all the files affected)
for revision 6. And you can see a link back to the issue ticket #21, crossed out since it is
labeled ‘‘resolved.’’ Now click ‘‘Roadmap,’’ and you can see, as in Figure 4-9, that you have
actually done some real work!

6. Now you deploy to test by logging into your test site operating system and updating the
project from the repository:

litworkshop@textworks:∼$ cd public_html/sites
litworkshop@textworks:∼/public_html/sites$ svn up
U all/backup/db/litworkshop.sql
A all/modules/token
A all/modules/token/LICENSE.txt
A all/modules/token/token.module

. . .

A all/modules/pathauto/po
A all/modules/pathauto/po/da.po
A all/modules/pathauto/po/ru.po
A all/modules/pathauto/po/es.po
A all/modules/pathauto/po/de.po
A all/modules/pathauto/po/pathauto.pot
Updated to revision 6.
litworkshop@textworks:∼/public_html/sites$ cd all/backup/db/
litworkshop@textworks:∼/public_html/sites/all/backup/db$ mysql \
-u dr_workshop -p dr_workshop < litworkshop.sql
Enter password:
litworkshop@textworks:∼/public_html/sites/all/backup/db$

100

Chapter 4: Getting up to Speed

7. Point your browser at your test site, and test the new functionality added by Ticket #21. For
now, this is informal, but in the future, you will see how to run through a test suite, with
different kinds of tests designed both to test what’s new as well as to make sure the new
functionality hasn’t broken anything we have already tested (regression tests).

Figure 4-9

Working on the Architectural Baseline
Up till now you have seen the high-level domain model sketched out in chapter 2. You need to verify
and extend it and put together a minimalistic document set to prepare the way for the completion of all
major decisions as to the architecture of your website application.

101

Chapter 4: Getting up to Speed

WorkshopLeader

User Story 01

The Workshop Leader
can list all the
outstanding
membership
applications, and can
either approve, reject,
or postpone action on
them.

Initially, approve/reject can be as
simple as having an edit field in the
view listing the applications, and then
going in and editing the application
and changing its status.

list_applications

application

reject_application

approve_application

cck

views

select_applications

Figure 4-10

I recommend using a robustness diagram (see the ‘‘On Finding a Common Language’’ sidebar in
Chapter 1, and Figure 4-10) in order to test the consistency of the user stories taken as a whole, and to
create your first detailed bridge between what functionality you want and how exactly you are going to
implement it. Robustness diagrams can replace the need for a formal site map or detailed storyboard or
anything like that, at least until the work matures somewhat, especially taking into account the fact that
your Drupal prototype is its own storyboard and navigational model. Robustness diagrams also aid in
the consolidation of the building of a common language, which was mentioned in the last chapter.

A robustness diagram is actually needed for each user story. In order to normalize the common language
of the project, you should be working on the domain model, the user story texts, and the robustness
diagrams at the same time.

First of all, see www.agilemodeling.com/artifacts/robustnessDiagram.htm for an example from Scott
Ambler’s site. You’ve got your site visitor who interacts with a boundary (interface), and any action
invokes a controller (functioning code — Drupal) on the server side, which performs actions and sorts
out what data needs to be persisted (stored) as an entity.

Scott Ambler uses a more formalized and objectivized artifact, called a use case,
rather than ‘‘user stories.’’ In our present context, the more classic user story (which
is not at all the same thing as a use case) is much more a propos, so we are going
with that.

102

Chapter 4: Getting up to Speed

Therefore, let’s take User Story 4-1. Figure 4-10 shows one possible Robustness Diagram for this
user story, which not only serves as a partial site map, but also provides us with a vision of the
necessary architecture as well. We are guided in the creation of the diagram by asking ourselves the
question, ‘‘Which boundaries, controllers, and entities do we need to implement the user story?’’ And, of
course, ‘‘Which Drupal modules can be associated with identifiable functionality?’’

We’ll take this up again in the next chapter.

Getting the Team Organized and with the
Program

As head cook and bottle washer, or pointy-headed project manager (someone has to do it), you need
a team. On some very small projects, a team could mean taking a break (or not) and simply wearing a
different hat. But for any nontrivial project, the complexity of even a simple website application demands
top-notch skill sets in some specialized areas.

Whom Do You Need?
Here are the minimum skill sets you need to marshal to get the job done on a nontrivial (more than five
to seven user stories) website application:

A project manager

Someone completely at home with graphic design applications such as The Gimp, Adobe Photo-
shop, and Fireworks

A Drupal themer

An experienced Drupal module mashup integrator

A Drupal module developer, should it be necessary to develop a module

A Webmaster who can administer the target hosting operating system environment and Drupal
installations, preferably of the ‘‘train the trainer’’ variety, since it will be very important to pre-
pare the client (in terms of personnel and infrastructure) to administer the website application
after launching

Look again at http://drupal.org. On the title bar, it still says ‘‘Community plumbing.’’ The end-users
of the Drupal CMS Framework tend to be website developers and not individuals, organizations and
companies who need a website, and the website reflects this technically oriented atmosphere. But those
individuals, organizations and companies need orientation and guidance in terms of their own concrete
use of the CMS framework.

A common mistake is to confuse a website developer with someone who will administer the site and
maintain it during its initial live launch and ongoing production. The developers need someone to whom
they can deliver the end result, otherwise disaster will strike. If the developers have no one to relate to on
a technical level, the deployment tasks will be compromised. So either make sure that there is someone
in your organization able and willing to take on this role, or hire someone who can. The only exception
may be if the developer is willing to take on that role, although be aware that there will normally be a
separate charge for this service.

103

Chapter 4: Getting up to Speed

Additionally the above list will need to be beefed up if scaling and high-traffic sites are involved.

‘‘Who You Gonna Call?’’
This depends entirely on your own objectives. You may want to learn how to do some or all of the
tasks yourself, but almost certainly not all of them — which means that you should begin to gather
around yourself a trustworthy group of professionals or make sure that resources are properly earmarked
in your company.

You can advertise on the Drupal Paid Services forum at http://drupal.org/paid-services. Be sure
to read ‘‘Hiring a Drupal Site Developer’’ (http://drupal.org/node/51169) first, along with several
excellent comments present on that page.

Another place to advertise is at http://groups.drupal.org.

Although by no means do any guarantees exist, you are probably very much better off hiring some-
one involved in the Drupal Community with a profile showing membership for a year or so and the
contribution of documentation, translations, themes, patches, or modules.

Elaboration Phase Cleanup
The Elaboration phase will be completed once the tasks allocated to the Prototype Release Iteration
Milestone are completed, and both the requirements and architectural baselines are set. That will most
probably happen during the next chapter, but by this time, you have certainly built up a good head of
steam.

You probably want to take advantage of Trac’s wiki functionality to add a few additional project man-
agement artifacts, which cannot be easily reduced or included in user stories or acceptance tests. These
are included in the following table:

Name Description

Risk list A list of risks associated with the project. They are generally sorted so that
the most important items are at the top. Each risk should include a short
statement describing mitigation and/or contingency actions (‘‘Plan B’’).

Creative brief This is a document that should be made available to the graphic design
and theming people, which addresses a host of factors such as the business
model and objectives, example designs, color schemes, imagery, and
typography, as well as usability goals and the kind of atmosphere that
should be achieved.

Styles and
Standards
Document

Apart from graphic and presentation styles, this document should set the
norm for naming and coding standards in the project, which in the case of
a Drupal project should follow the Drupal coding standards. (See
http://drupal.org/coding-standards. As explained here, these are
based on the PEAR coding standards; see also
http://pear.php.net/manual/en/standards.php.)

104

Chapter 4: Getting up to Speed

Summary
You followed up on your first functional prototype-based meeting with Pam, your client, and she has
written all the user stories, which include relevant dialog with you, together with testing suggestions.
You have then made use of recommended on-line resources in order to plan the iterations of the project
and have exercised the develop-commit-deploy-test-track cycle on an initial task.

You then used robustness diagrams in order to advance in the setting of the architectural baseline for the
project, with a glimpse at which contributed Drupal modules will actually answer the question of how to
implement the user stories. And you have given thought to what human resources will be necessary
to get the litworkshop website application successfully launched.

105

Part II

Getting Your 5.x Site
Up-To-Date

Chapter 5: Finishing Up the Elaboration Phase

Chapter 6: Pushing the Envelope

Chapter 7: Becoming an Expert Drupal Themer

Finishing up the
Elaboration Phase

As the Milestone checklist shows (see Figure 5-1), you are almost done with the Elaboration phase.
However, some additional work needs to be done on the first one, ‘‘Create an initial environment,’’
and there is a little unfinished business regarding the second, ‘‘Whip up the initial prototype.’’
Finally, there is one major milestone, ‘‘Work on the architectural baseline,’’ where there is still a lot
to be done.

Creating an Initial Environment
You’ve already gotten your hands dirty when you worked on your development box, then saved
everything to the repository and deployed to the test site via that repository. Now you just need
to get a more focused view of how you are going to tool yourself up on this project, with some
development modules to make your life a little easier, and a clearer, more polished idea of the
process work flow. Luckily, there are a few modules that came to the fore during the tail end of
the Drupal 5 life cycle that are really going to make your life easier, plus one old favorite that’s been
around, fortunately, for a long while — Devel:

Update status module: http://drupal.org/project/update_status

Drupal shell module: http://drupal.org/project/drush

Devel module: http://drupal.org/project/devel. Even for Drupal 5.x, this module ‘‘for
Drupal developers and inquisitive admins’’ is a real lifesaver, as a perusal of its features
will show. Later on in this book, you will find out about the fabulous support for real-time
theming debugging contributed by this module.

And you want the answer to two questions you may have been asking yourself:

How am I going to update the Drupal release easily?

Chapter 5: Finishing up the Elaboration Phase

Create an initial environment

Whip up the initial prototype

Get initial feedback from the client

Finish the user stories with the client

Plan the project

Work on the architectural baseline

Get the team organized and with the program

Figure 5-1

How am I supposed to update modules easily and cleanly and reflect all that in the version
control repository without painstakingly adding, removing, and committing individual
files?

You’ll see how this pans out as you do stuff throughout this chapter and the rest of the book, but
your basic workflow is going to be:

1. Provision, develop, and test on the development box.

2. Deploy to testing (and eventually production) from the repository.

So your environment is all set.

How Can I Easily Update the Drupal Release?
This first question is answered in a word: CVS.

If you used CVS to check out your virginal copy of the current Drupal 5.x release, you did so with
the command:

$ cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal co
-r DRUPAL-5-12i
drupal

This checks out the project drupal to a subdirectory. The -z6 switch says to use gzip compression
during the checkout (co) process, and the -d switch sets the repository path, with the -r switch
specifying the revision to check out.

Now, of course, you have replaced the sites subdirectory with your own themes and modules, and
your own default settings file. Before you update to, say, Drupal 5.8, there is just one thing you need
to do: Tell CVS to ignore the sites subdirectory and especially the default settings file. To do this,
create a file in the main Drupal directory, which tells CVS to do this: .cvsignore, so that when you
update to the next Drupal release, your settings file will be left undisturbed.

Study the following example to see how to do this:

$ cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal co \
-r DRUPAL-5-6 drupal
$ cd drupal

110

Chapter 5: Finishing up the Elaboration Phase

Now create a file called .cvsignore to protect settings:

$ cat sites/default/settings.php > .cvsignore

Edit the settings file so that the mysql URL string reflects your database settings. Mine has:

$db_url = ‘mysql://thisproject:mysecret@localhost/thisproject’;

Now update from Drupal 5.6 to Drupal 5.7:

$ cvs update -dPr DRUPAL-5-7

View your mysql URL string, to confirm that it was left undisturbed.

The actual update command says to create any directories that are in the repository but not in the
sandbox (-d), to not include empty directories (-P), and to update the working copy to revision
DRUPAL-5-7. This is the command that works best for automagically updating Drupal core to a new
release on a filesystem originally checked out with CVS:

$ cd {Drupal document root}
$ cvs update -dPr DRUPAL-5-8

Question: Why CVS?
Answer: Because Drupal is still using it. http://drupal.org/node/289117.

Question: Am I Done?
Answer: Remember to always run update.php as admin after updating the Dru-
pal core or any module, so that any necessary database modification scripts can
be run. So, no, not quite.

How Can I Update Modules Easily and Cleanly?
. . . and reflect all that in the version control repository without painstakingly adding, removing,
and committing individual files?

Here’s the thing: you want to be able to deploy a unique snapshot of your project at any time from
the repository, which will be as easy as plunking down a SVN checkout or update on top of a fresh
Drupal release install. You saw in the previous chapters how this involves including in this project
a state snapshot including all the modules (third-party ones you have installed, together with any
you might develop yourself) together with the database dump. Now, modules get updated, either
because new features are developed, bugs are fixed, or a new security fix might be released.

To update the code in the module directory, if you weren’t using version control, you would sim-
ply delete all the files in the module directory and then copy in the new, probably by untarring

111

Chapter 5: Finishing up the Elaboration Phase

(unpacking) the files. Suppose one file was removed entirely and another new one was added, say,
a translation. When you go to commit the directory to the SVN repository, subversion will protest
because it can’t find a file previously under version control. And even worse, the new file will be
ignored altogether.

So, you download the module tarball, open it up and review the list of files, copy the files into the
module’s directory, and then do an svn add for all the new files, and an svn rm for all the files no
longer part of the module’s code. And, finally, you need to do an svn commit.

What if there were a Drupal module that does all of that for you? W00t! There is! Enter the fabu-
lous Drush module, which works in tandem with the update status module to become, almost, an
‘‘apt-get’’ system for Drupal, or at least a running start in that direction.

apt-get is part of apt, the Advanced Packaging Tool, ‘‘a user interface that works with core
libraries to handle the sometimes difficult process of installing software on Linux.’’ See
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool.

Download the latest version of Update Status (this will be the second-to-the-last time you have to
do that!). In itself, it is a boon, telling us exactly what you have installed, and what you need
to update. Install it by following the instructions in the accompanying README.txt file, and
go to Administer � Logs � Available updates. Figure 5-2 shows where you are with litworkshop.

Right, so Global Redirect and Pathauto (another pair of modules that work in tandem, as explained
in Chapter 4) have come out with a new version. You can read the Release notes right from the
admin page, and there is a download link too.

Figure 5-2

112

Chapter 5: Finishing up the Elaboration Phase

But you are going to outdo yourself now, and install the Drush module, and let the CPU do the
walking.

Download the latest version of Drush (this will be the last time you have to do that!), and install it by
following the instructions in the accompanying README.txt file (any decent contributed module
worth its salt has an accompanying README.txt file that tells you how to install it and get it going,
sometimes with the aid of an INSTALL.txt file). What you should do is enable the Drush module
and the following submodules:

Drush Package Manager

Drush Package Manager SVN Support

Drush Package Manager wget Support

Drush SQL commands

Drush Toolbox

Then, from the command line in the Drupal root directory, you can run the following and read the
results:

$ php sites/all/modules/drush/drush.php help

If your screen looks something like Figure 5-3, you have successfully installed both modules.

Figure 5-3

113

Chapter 5: Finishing up the Elaboration Phase

Question: What Now?
Answer: Place the two module directories under version control and commit
to the repository. By the way, don’t forget to dump the database state first into
sites/all/backup/db/litworkshop.sql. You can do that with the drush sql dump
command (see below on how to create a Drush alias):

$ drush sql dump > sites/all/backup/db/litworkshop.sql

then:

$ cd sites
$ svn add all/modules/drush
$ svn add all/modules/update_status/
$ svn commit -m "finally got smart and installed update-status\
and drush modules"

More about Aliasing
Assuming that you are using the bash shell as your terminal, or another shell that
supports command-line aliasing, you can populate your ∼/.bash_aliases file with
something like the following:

alias drush=’php sites/all/modules/drush/drush.php’
alias checkouthead=’cvs -z6
-d:pserver:anonymous:anonymous@cvs. drupal.org:/cvs/drupal \
checkout drupal’
alias checkout6=’cvs -z6
-d:pserver:anonymous:anonymous@cvs. drupal.org:/cvs/drupal \
co -r DRUPAL-6-6 drupal’
alias checkout5-11=’cvs -z6
-d:pserver:anonymous:anonymous@cvs. drupal.org:/cvs/drupal \
co -r DRUPAL-5-11 drupal’
alias checkout5-12=’cvs -z6
-d:pserver:anonymous:anonymous@cvs. drupal.org:/cvs/drupal \
co -r DRUPAL-5-12 drupal’

In Ubuntu at least, the .bash_aliases file is read by the ∼/.bashrc file; you may
have to make sure the following three lines are uncommented/present:

if [-f ∼/.bash_aliases]; then
. ∼/.bash_aliases

fi

With the appropriate alias installed in your bash shell environment, updating the Pathauto and
Global Redirect modules becomes as easy as carrying out these steps:

1. Update Pathauto and Global Redirect in the filesystem and repository.

$ drush pm refresh
$ drush pm update --svnsync

114

Chapter 5: Finishing up the Elaboration Phase

Figure 5-4

(By default, Drush will show you what it intends to update and solicits confirmation —
see Figure 5-4.) Upon answering Yes, Drush completes the job and tells you how to
finish up:

Do you really want to continue? (y/n): y
Project globalredirect was updated successfully. Installed version is
now 5.x-1.3.

115

Chapter 5: Finishing up the Elaboration Phase

You should consider committing the new code to your Subversion repository.
If this version becomes undesirable, use Subversion to roll back.
Project pathauto was updated successfully. Installed version is now 5.x-2.3.
You should consider committing the new code to your Subversion repository.
If this version becomes undesirable, use Subversion to roll back.
You should now run update.php through your browser.
victorkane@victorkane:∼/Work/Wiley/litworkshop$

2. Run update.php as usual when updating Drupal core or modules.

3. Complete the snapshot with the database state.

4. Test.

5. Commit (this can be done with the drush -svncommit switch, but it is better to
test first).

I ran update.php (I set the variable $access_check in the update.php file to False because I wasn’t
logged in as user number 1, then changed it back to True afterward) and created a blog entry,
and the module changes were looking good. So I committed and then checked how the repository
looked in Trac. See Figures 5-5 (Revision Log) and 5-6 (Changeset).

Figure 5-5

116

Chapter 5: Finishing up the Elaboration Phase

Figure 5-6

Whipping up the Initial Prototype
At one of our first meetings with Pam, I explained about acceptance tests. So Pam wrote one for the ticket
‘‘Clean URLs and automatic generation of SEO friendly paths,’’ and for the other user stories slated to be
implemented during the initial Prototype Milestone. Acceptance Test 5-1 illustrates this and shows how
every Acceptance Test (which strives to search for bugs and is not satisfied simply by code coverage)
consists of a series of scenarios or concrete uses of the features being tested.

Demystifying Testing
Testing is a broad subject. But you won’t get any nontrivial site done without dealing
with testing. Code coverage (see http://en.wikipedia.org/wiki/Code_coverage)
strives to make sure that every line of code and every function and every conditional
statement and every entry/exit point and every parameter value limit has been thor-
oughly tested, usually through automated testing programs. The subject of automated
testing and code coverage has become quite popular in the Drupal Community, with
the simpletest unit tester (http://simpletest.org/) being the workhorse of choice.
Now, unit testing, especially through automated tests (which can be executed when
the code is first committed, as well as against future modifications in the code base), is
actually part of the implementation cycle itself, and the more you have of it, the more
your work will undoubtedly gain in quality. The best modules are built in this way.

Continued

117

Chapter 5: Finishing up the Elaboration Phase

So unless you are going to do coding and/or module development, this kind of testing
is already done for you. But in any case, unit testing can only go so far. Acceptance
testing is actually a different kind of testing, of the ‘‘black-box’’ variety; it is concerned
with making sure the requirements are actually present as features in the finished
product.

Acceptance Test 5-1

Test Clean URLs and automatic generation of SEO-friendly paths.

Create a blog entry, and verify the generated URL alias.

Try it with an apostrophe.

Change the configuration for blog aliases, and make sure the whole
URL reflects the changes.

Change it back to ./blog/{user name}/title, and verify that
it is working properly.

Here is a list of the user stories allocated to the initial Prototype Milestone (the complete list can be seen
in Figure 4-7, in Chapter 4):

A Workshop Leader can approve applications to join the workshop.

A Workshop Leader can suspend Members and Publishers.

A Workshop Leader can manage affinity groups.

A Workshop Leader can broadcast messages to Members.

A Workshop Leader can do everything Workshop Members and Publishers can do.

The decision to include initial affinity groups and message broadcasting at this early stage was made
because of the huge architectural impact of these user stories. Postponing their implementation until a
later stage would run the risk of decisions about which module(s) to use, configuration, and other aspects
having a huge impact on other decisions already taken.

The first two and the fifth user stories are supported by off-the-shelf Drupal Administration tools. You’ll
deal with them in a moment.

What about the implementation of the third and fourth user stories?

It is not common practice to number user stories. Nor do the user stories for the
On-Line Literary Workshop project have anything to do with specific chapters.
However, numbering is used here for reference purposes.

118

Chapter 5: Finishing up the Elaboration Phase

A Workshop Leader Can Manage Affinity Groups
The implementation of this user story is a great example of how you can follow best practices offered by
the Agile approach to development, in a bite-sized chunk. First of all, the card-conversation-confirmation
template allows you to have the client write the Acceptance Test before you even start implementation.
Then, a lexical analysis of the card allows you to set up a robustness diagram showing the basic
business objects, or building blocks, for the solution, while at the same time migrating everyone
involved toward a common language. This common language helps to fine-tune the design and
will guarantee good semantics in the configuration (menu items, labels, even names used for
variables and functions if coding is necessary), and allows you to make sure your card is properly
written into the bargain. And finally, the robustness diagram allows you to map your business
objects to actual Drupal modules, or make it very clear whether a custom module needs to be
developed.

See User Story 5-1.

User Story 5-1
A Workshop Leader can manage affinity groups.

Card
A Workshop Leader can create, list and review, configure and delete groups to which
users of the On-Line Literary Workshop belong. When a new user joins the on-line
community, she is made a member of a certain affinity group. This will give her access
to content only visible to group members.

Conversation
This can be based on the Drupal contributed module Organic Groups. This module
should be used to control access to content on the site.

By virtue of this user story, at a minimum, a test user should be able to access the
affinity group homepage. Other user stories will deal with additional associated func-
tionality.

Confirmation

Test 1 — Workshop Leader creates a group called Haibun and assigns
user haibun to it.

Test 2 — The user haibun logs in and has access to haibun content.

Test 3 — Workshop Leader modifies the Haibun group configuration.

Figure 5-7 shows the robustness diagram clarifying this functionality. Obviously, this user story is just
to get the ball rolling with Organic Groups and its impact on architecture (see below, ‘‘Working on the
Architectural Baseline’’) and allows the Workshop Leader to create and initially configure groups to
which Workshop Members may belong.

119

Chapter 5: Finishing up the Elaboration Phase

WorkshopLeader

admin_groups

create_group

WorkshopMember

User Story

A Workshop Leader
can manage affinity
groups.

acccessed by all
controllers

group_homepage

affinity_group

configure_group

delete_group

og

access_group_content

Figure 5-7

Now go ahead and put your newly acquired Drush interface to good use and install the Organic Groups
module!

victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush pm install og--svnsync --
svncommit --svnmessage="Installed og module"i
Project og successfully installed (version 5.x-7.3).
Project committed to Subversion successfully
victorkane@victorkane:∼/Work/Wiley/litworkshop$

Now to configure, step through the user story test steps and deploy to the test site:

1. To configure, you first go and enable the module at Administer � Site building �Modules.
But wait, the Organic Groups module Enable checkbox is grayed out, and it says ‘‘Depends
on: Views (missing), Views_rss (missing).’’

2. Go back to Drush, and install Views (you’ll certainly be needing it anyway):

victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush pm install views --svnsync --
svncommit --svnmessage="Installed views module"
Project views successfully installed (version 5.x-1.6).
Project committed to Subversion successfully
victorkane@victorkane:∼/Work/Wiley/litworkshop$

3. Go back to Administer � Site building �Modules, and enable the following checkboxes:

120

Chapter 5: Finishing up the Elaboration Phase

Organic groups

Organic groups access control

Views

Views RSS

Views Theme Wizard

Views UI

4. Click on the ‘‘Save configuration’’ button.

You will see some comforting info printed at the top of the screen in the info box, like the
following:

‘‘Organic groups module enabled. Please see the included README file for further
installation instructions.’’

‘‘Installing views.’’

‘‘Views module installed tables successfully.’’

‘‘The node access table has been rebuilt.’’

‘‘The configuration options have been saved.’’

5. Head over to Administer � User management � Access control, and enable all Organic
Groups and Views permissions for the dev role.

7. Creating a group actually boils down to creating an item of content type group. So you need
to pay a visit to Administer � Content management � Content types and click on the ‘‘Add
content type’’ tab in order to create a content type called group.

Previously, the Organic Groups module did this for you by automatically creating a
module (code)-based group content type. But now, with CCK giving you the
possibility of adding arbitrary fields to a custom content type, you gain a lot of
flexibility by rolling your own.

8. For now, leave it as simple as possible, but be sure to enable the group node option, as well
as to disable promotion to front page, enable Create new revision, and disable comments.
The workflow section should look something like Figure 5-8.

9. Next, you must allow Workshop Leaders to create items of content type Group, which is the
same thing as saying, ‘‘A Workshop Leader can create a group.’’ You do this by visiting
Administer � User management � Access Control and assigning the permissions related
to the newly created content type. Clicking ‘‘Save content type’’ brings up the complete list
of content types so far, as shown in Figure 5-9.

Big Red Security update alert! It turns out there has been a new Drupal core release, patching
some recently discovered security holes.

10. Leave everything you are doing, grab a fresh copy of the new Drupal security
release, and copy it over the existing installation, being careful not to write over your

121

Chapter 5: Finishing up the Elaboration Phase

./sites/default/settings.php or other site-specific details . . .or, if you followed our CVS
checkout instructions in the last section in this chapter (aren’t you glad you did?), simply
open up a terminal to the Drupal document root and do the following:

victorkane@victorkane:∼/Work/Wiley/litworkshop$ cvs update -dPr DRUPAL-5-12
? .cvsignore
? files
? sites
cvs update: Updating .
P CHANGELOG.txt
P install.php
P robots.txt
. . .

victorkane@victorkane:∼/Work/Wiley/litworkshop$

Be sure to run the update script http://example.com/update.php, and you are all set.
Phew. Red Alert gone. We are once again legal.

11. Now, enable at least one other content type as a legitimate group post. Literary Piece is
perfect, because you want literary pieces to be able to be shared by groups (either open or
closed). Go to Administer � Organic Groups � Organic Groups configuration, and click
on the Edit link corresponding to the Literary Piece content type. At the bottom, in the
Workflow section, select the option: ‘‘Standard group post (typically only author may edit).
Sends email notifications.’’ Click on the ‘‘Save content type’’ button, and you should see
something like Figure 5-10 on the Organic Groups Configuration page.

12. For now, you’ll leave the rest of the settings as is, and click ‘‘Save configuration.’’

Figure 5-8

122

Chapter 5: Finishing up the Elaboration Phase

Figure 5-9

Figure 5-10

123

Chapter 5: Finishing up the Elaboration Phase

Now, when user Pam logs in and wants to create a group, assuming you have called the content type
Group (machine-readable name of group) and have supplied an appropriate description, she will see
that she can create a new affinity group.

Although Chapter 6 goes into more detail on functionality, let’s just make sure this is working:

1. Log in as user pam, click on the ‘‘Create content’’ link from the left-hand-side menu, and
click on the Group link to create a new affinity group.

2. Enter Haibun as the group name, together with a suitable group description. Put some
lorem ipsum into the body, select the closed membership option (‘‘Membership is exclu-
sively managed by an administrator’’), and click on the Submit button to create the new
affinity group.

3. Now, again from the left-hand-side menu, click on the Groups link for user pam, and you
should see the new group listed as in Figure 5-11.

Figure 5-11

4. Click on the link in the Members column showing the number of members (this is not terri-
bly intuitive), which is right now set to 1 (user pam, who created the group and is therefore
the group manager). Now click on the ‘‘Add members’’ tab, enter james (who was created
in Chapter 4) in the List of users to add, and click on the Submit button. The message ‘‘1 user
added to the group’’ should appear in the info area on top of the content area. Clicking on
the List tab should show both james and pam listed as members.

5. Now log out and log in as james. This user can now click ‘‘Groups’’ and see the Haibun
group listed there. Cool — user james can see that he is a member of Haibun. Now, james

124

Chapter 5: Finishing up the Elaboration Phase

clicks ‘‘Recent posts’’ from the left-hand-side menu and clicks his Haibun created earlier and
edits it (or creates a new literary piece). Just below the Text area, he sees the Audience check-
box and selects his group Haibun as the group the post will be shown to. He submits his
literary piece, then clicks ‘‘Groups’’ again and goes to the Haibun group home page, where
james is proud to see his Haibun posted!

6. Now, log in as joyce, and create a new literary piece content type. There is no Audience
checkbox for joyce because she is not a member of any affinity group. Log back in as james
and create a new literary piece, and you will see that the option is there to post it to the Hai-
bun group. Cool, now log in as user pam, and go to Groups and the Haibun group, and see
how productive the members of the literary workshop are!

Well, now is a good time to clean the cache, dump the database, and commit what you have right now to
the repository before you go on.

If you are versioning your database dump in ./sites/all/backup/db/litworkshop.sql, you can do the
following:

victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush cache clear
Cache cleared.
victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush sql dump > \
sites/all/backup/db/litworkshop.sql
victorkane@victorkane:∼/Work/Wiley/litworkshop$ cd sites
victorkane@victorkane:∼/Work/Wiley/litworkshop/sites$ svn st
? CVS
? default/settings.php
? default/CVS
? all/CVS
M all/backup/db/litworkshop.sql
victorkane@victorkane:∼/Work/Wiley/litworkshop/sites$ svn commit -m \
"updated to Drupal 5.8 core release, configured and initially tested organic groups"
Sending all/backup/db/litworkshop.sql
Transmitting file data .
Committed revision 11.
victorkane@victorkane:∼/Work/Wiley/litworkshop/sites$

A Workshop Leader Can Broadcast Messages to Members
In order to implement this user story, the contributed privatemsg may be all that is necessary. The mod-
ule home page can be found at http://drupal.org/project/privatemsg.

Download and install the module. As an exercise, go ahead and enable the module, then follow the
instructions so that the user logged in as pam can send some messages to james and joyce, and log in as
james and joyce and see if you receive, can reply to, and can use the functionality.

Remember, the complete code base and documentation are available for download at the Leveraging
Drupal website (www.wrox.com).

For each user story allocated to the current Milestone, Pam and I ran all the Acceptance Tests for the
Prototype Milestone tasks (based on the list of user stories allocated to this Milestone) and made sure
they all passed, after necessary bug-fixing and other modifications had taken place.

125

Chapter 5: Finishing up the Elaboration Phase

See the next chapter to see what the results were and what action was decided on in each case, but
agreement was reached that for a Prototype, the Milestone was met.

Commit to the repository, and deploy to the test site.

What’s Left?
In terms of the ‘‘Getting initial feedback from the client’’ goal, your client has participated in the project
planning and has written all the user stories. The client was responsible for writing all the Acceptance
Tests for the first iteration and participated in executing them. She is now writing the Acceptance Tests
for the second Milestone. We’re looking good on that score.

In terms of the goals ‘‘Finish the user stories with the client,’’ ‘‘Plan the project,’’ and ‘‘Get the team
organized and with the program,’’ you’re all set.

There is one area where you still need a tad more work: ‘‘Work on the architectural baseline.’’

Working on the Architectural Baseline
In the last chapter, you could see that a robustness diagram did a lot of great things for a user story.
First off, it tests the semantic consistency of the user story itself, the vocabulary that has to be actually
used. Also, it serves as a mini site map showing how a user interacts with the system. And it forms a
bridge between what the client wants and how that is to be implemented; it sheds a first glimpse into
what software components are actually capable of supporting that functionality.

Question: When Do You Do the Robustness Diagrams?
Answer: As the user story is being written and conversed between development and
client staff. Then, as the user story is taken in turn and implemented, you refine it.

Question: Do You Write All the Robustness Diagrams Together
in One Fell Swoop?

Answer: No, it is a kind of by-product as each user story gets written, conversed, and
implemented. It kind of inducts itself into the big picture the architect is searching for,
in the course of the process for each iteration.

What needs to be understood here is that the overall picture of the complete shopping list of software
components (Drupal modules, mostly, in this case) will actually emerge from the process you are follow-
ing and should not be pushed or adored in the abstract. With each robustness diagram you do, you will
discover one or two contributed Drupal modules you need.

So to see how this stacks up concretely, look back at a couple of user stories and robustness diagrams that
got written along the way during this first iteration (or check out the complete set from the Leveraging

126

Chapter 5: Finishing up the Elaboration Phase

Drupal website), and let’s draw the conclusions on the wall: or, rather, on what is called a high-level class
diagram showing the most important interfaces (screens?), business objects (entities), and logic (con-
trollers) actually needed to get this show on the road, and how they tie in to Drupal core and contributed
modules functionality, as well as other third-party components (feed parsers, rich text editors, etc.).

The robustness diagrams Figure 4-10 (in Chapter 4) and Figure 5-7, taken together with the complete
set, give rise to the architecture diagram, with an initial version in Figure 5-12, showing the relationship
between the business objects implementing the functionality and Drupal modules forming part of the
architecture.

application

WorkshopLeader

WorkshopMember

Publisher

blog

book

views

og

cck

forum

literary_piece

global_redirect

literary_piece_critique

literary_piece_version

privatemsgmessage

pathauto

workshop

magazine

<<entity>>
afinity_group

1

1

1..*

Figure 5-12

Summary
In this chapter, you have wrapped up the Elaboration phase and made sure that your development
environment allows you to easily update both the Drupal core as well as contributed modules, together
with as much convenience through the Drupal Shell module as can be brought to bear.

You have confirmed the basic website development workflow on the basis of these tools and have fleshed
out the functionality so as to be able to support all the user stories allocated to this Milestone.

You have also detailed a series of Acceptance Tests that have to be run now by Pam, the client, both in
order to confirm that you have really got the Milestone deployed, as well as to serve as a springboard for
the planning and execution of the next phase, Construction.

127

Pushing the Envelope

So the project is now under way. From your development box, you have access to the code reposi-
tory, the Trac site, and the application test site, and your client is participating from her workstation
or laptop.

Since the envelope is going to be pushed now, with more significant parts of the architecture being
implemented, things are going to get substantially more complicated, and communication runs the
risk of getting dispersed.

This chapter address all these concerns. In the section, ‘‘You’ve Got Mail,’’ you see private mes-
saging between yourself and the client in full swing. In the section, ‘‘Using Your Own dev Affinity
Group,’’ you leverage the power of the Organic Groups module to create a special, secure place
where development documents can be centralized and shared. You are introduced to the pow-
erful Views module in the section, ‘‘Rolling Your Own Document Case and Index,’’ as you find
ways of listing and indexing the contents of the dev affinity group content. In the section, ‘‘Now,
Where Were We?’’ you review how Trac helps you keep a running sense of where you are on the
project, and, indeed, the next few tasks are identified. Finally, the tools used so far are applied to
the implementation of some of these tasks in the section, ‘‘Browsing and Filtering Views of Literary
Pieces.’’

You’ve Got Mail!
After deploying all the work completed in the last chapter to the test site (by committing everything,
including a database dump, to the repository, doing an SVN update on the test site, and writing the
new database state to the database), try sending a private message to Pam, telling her you need to
meet. From the left-hand-side menu, logged in as user dev, go to ‘‘My account.’’ Then you will see
a new addition: ‘‘Private messages’’ (see Figure 6-1). Follow these steps:

1. Click on ‘‘Write private message,’’ and select user pam in the ‘‘To’’ field, as in Figure 6-2.

2. Fill in the Subject — Let’s meet or whatever — and then the Message field, and click on
the ‘‘Send private message’’ button.

Chapter 6: Pushing the Envelope

Figure 6-1

Figure 6-2

130

Chapter 6: Pushing the Envelope

3. Now, log out and log in as pam, and you will immediately see two things: on the
left-hand-side menu (the Navigation menu with the user name, in this case, pam, as
heading), there is a new entry, ‘‘My inbox,’’ which right now shows that there is an unread
message waiting for the user. And the info box at the top of the content area says, ‘‘You have
one new private message,’’ with the phrase private message made clickable. See Figure 6-3.

Figure 6-3

User pam clicks on private message or the ‘‘My inbox’’ menu item and is taken to her inbox. The
‘‘Let’s meet’’ message is highlighted by a red ‘‘new’’ indicator. User pam clicks there to read
the message. As shown in Figure 6-4, she has the option to reply to or delete the message, or to
go back to list her messages. After she has received a lot of messages, she can even organize them
in folders. The operation of the system is quite straightforward.

Using Your Own dev Affinity Group
You decide to take advantage of the affinity group feature to create an affinity group of your own so
that you, other programmers, the graphic designers, Pam, and others of her staff can share documents,
Acceptance Tests, and so forth, which only the dev affinity group will be able to access. Cool. Drupal is
its own best prototyping tool — it can even self-document itself!

This means that if you download the Chapter 5 tarball and deploy it and log in as
user dev, when you go to Groups and select the dev group, you can see all the user
stories and all the Acceptance Tests, links to Trac, and even repository commits and
other stuff.

131

Chapter 6: Pushing the Envelope

Figure 6-4

Follow these steps to create the dev affinity group.

1. So, logged in as user dev, you hit ‘‘Create content’’ from the Navigation menu, and then click
on the ‘‘Group–Create an affinity group’’ link.

2. Fill in the info for Title, Description, and Mission Statement.

3. You want to keep this a closed group (Membership requests section), and, moreover, one
that is not even advertised in the group directory, so select the ‘‘Private group’’ checkbox.
Clicking on the Submit button creates the group!

4. Now, because the dev group is purposely excluded from the groups directory, when
you click ‘‘Groups’’ from the Navigation menu, the group does not appear. However, if you
then click on the ‘‘My groups’’ tab, you have access to the group. Then, click ‘‘1’’ in the
Members column, and the ‘‘Add members’’ tab. Enter user pam in the ‘‘List of users’’ text
field, and click ‘‘Submit.’’

5. Now implement two or three content types enabled as group post elements with which to
manage the project (right from within itself!). To do this, you need to create the content type
and then specify additional fields as needed. These additional fields and their characteristics
are described in the tables below. You need to implement the following three content types:

User Story

Acceptance Test

Project Document (for things like the Risk List, Creative Brief, and Styles and Standards
Document)

132

Chapter 6: Pushing the Envelope

The following table specifies the fields defining the User Story content type, the field labels,
the machine-readable name, field type, widget, configuration, and required state for each
of the fields composing the content type. The Required Modules column shows which modules
must be installed and enabled prior to implementing the content type.

User Story Content Type (user_story)

Field Label Machine-Readable
Name

Field
Type

Widget Configuration Required/
Multiple

Required
Modules

Name title (default)

Card user_story_card Text Text Field 5 rows Yes/No CCK

Conversation user_story_conversation Text Text Field 5 rows No/Yes CCK

Confirmation user_story_confirmation Text Text Field 5 rows No/Yes CCK

In each of these three content types, you should leave the deprecated Body field label blank, set the
‘‘Default options’’ to Published, and ‘‘Create new revision’’; set the Organic groups usage to ‘‘Wiki group
post (any group member may edit). Sends email notifications,’’ and set Private Message ‘‘Write to author’’
links on ‘‘Link to node’’ and ‘‘Link to comment’’ (or, of course, suit yourself!).

The items in the following table are the fields making up the Acceptance Test content type. Notice
that the Date and Date API modules must be installed and enabled:

Acceptance Test Content Type (acceptance_test)

Field Label Machine-
Readable Name

Field
Type

Widget Configuration Required
/Multiple

Required
Modules

Title title (default)

User Story acc_test_
user_story

Node
Reference

Autocomplete
Text Field

Content types
that can be
referenced: User
Story

Yes/No CCK

Date Run acc_test_
date_run

Date Select List Granularity:
month, day, year

No/No date,
date_api

Purpose acc_test_
purpose

Text Text Field 5 rows No/No CCK

Initial condi-
tions/test
prerequisites

acc_test_initial Text Text Field 5 rows No/No CCK

Observation
point

acc_test_
observation_
point

Text Text Field 5 rows No/No CCK

Continued

133

Chapter 6: Pushing the Envelope

Acceptance Test Content Type (acceptance_test)

Field Label Machine-
Readable Name

Field
Type

Widget Configuration Required
/Multiple

Required
Modules

Test steps acc_test_steps Text Text Field 5 rows No/Yes CCK

Post conditions acc_test_post Text Text Field 5 rows No/No CCK

Results and
recommendations

acc_test_results Text Text Field 5 rows No/No CCK

You will have to install the Date and Date API (http://drupal.org/project/date) contributed
modules to support fields of type Date for this to work. In any case, a date field is something you will be
using often.

The configuration of the Acceptance Test content type deserves some comments. Figure 6-5 shows the
view from Administer � Content management � Content types � Acceptance Test.

Figure 6-5

Unusually, the User Story is listed first as a linked Node Reference (make sure you check the User Story
option in the Content types that can be referenced section), then comes the Title, then the Date the Accep-
tance Test is run, and then its purpose. Next space is provided to specify the test’s initial conditions or
prerequisites, such as having logged in as a particular user or being on a certain page. Then the observa-
tion point (Where are you standing when you measure this?) can be specified, followed by a series of test
steps (click this, do that, do this, go there, etc.). Finally, the post conditions (what the state of the world
should be after running the test) are given, followed by a space provided for the person running the test
to enter the test results and recommendations.

By the way, as you can see in the following table that specifies the fields defining the Project Document
content type, the only explicitly required field is the reference to the user story being tested (without
which the creation of the item makes no sense). Don’t feel obliged to go into any more detail than abso-
lutely necessary.

134

Chapter 6: Pushing the Envelope

Project Document Content Type (prj_doc)

Field
Label

Machine-
Readable Name

Field Type Widget Configuration Required
/Multiple

Required
Modules

Title title (default)

Discipline prj_doc_
discipline

Text Select List Allowed values list:
bm|Business Modeling
req|Requirements
ad|Analysis and Design
imp|Implementation
(after field creation, go
back and select this as
the default)
test|Test
dep|Deployment
ccm|Configuration and
Change Management
pm|Project Management
env|Environment

Yes/No CCK

Abstract prj_doc_
abstract

Text Text Field 5 rows No/No CCK

Text prj_doc_text Text Text Field 5 rows No/Yes CCK

Go ahead and create these content types, or else import them from the Leveraging Drupal website. Set
permissions for creating and editing these content types for dev and Workshop Leader. (No one else
will see them when they click ‘‘Create content,’’ and individual content items will be restricted to the dev
group.) To start out, add in a couple of the user stories, Acceptance Tests, and a Risk list project document
that the project leader can maintain in order to permanently show the ‘‘risk’’ state of the project at all
times. Remember to restrict their group access. Figure 6-6 shows how a user story is restricted to the dev
group by selecting it in the Audience dropdown list in the Groups section.

Check out this chapter’s deployment tarball for exported text versions of all content types, as well as
examples of each one.

I hope that you will find them useful for all your future projects using the Drupal CMS Framework.

Figure 6-7 shows the dev group home page (Groups � My Groups � dev) with a few example items
added of each kind.

Don’t forget to commit and deploy:

victorkane@victorkane:∼/Work/Wiley$ cd litworkshop/
victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush cache clear
Cache cleared.
victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush sql \
dump > sites/all/backup/db/litworkshop.sql

135

Chapter 6: Pushing the Envelope

victorkane@victorkane:∼/Work/Wiley/litworkshop$ cd sites
victorkane@victorkane:∼/Work/Wiley/litworkshop/sites$ svn commit -m \
"added some project docs, acceptance tests and user stories"
Sending all/backup/db/litworkshop.sql
Transmitting file data .
Committed revision 19.
victorkane@victorkane:∼/Work/Wiley/litworkshop/sites$

Figure 6-6

Rolling Your Own Document Case and Index
Well, it is great to be able to access all the project documents in one place and share them wiki style with
the client. But Figure 6-7 is a bit overwhelming because you have to scroll a lot and even page through the
list to see what you have. The same goes for other group home pages, like the Haibun group home page.
Wouldn’t it be great if you could see a table with links instead of a long sausage of the actual content
itself?

In software development, this is called a Document Case (a virtual portfolio of documents) and is funda-
mental for maintaining a centralized, shared bird’s-eye view of all the project documentation. You are
going to be able to implement this now, including the possibility of filtering the list according to different
criteria.

This is what’s great about using Drupal.

136

Chapter 6: Pushing the Envelope

Figure 6-7

Implementing the Document Case
To solve this first of all in a pretty straightforward manner, you need to start exploring the options offered
through the Views module configuration. Up until now, this book has gone into a lot of detail concerning
the way you can create custom content types via the CCK module, but you haven’t seen anything of its
all-important counterpart, the Views module.

The All-Important Views Model
You can find the Views module home page at http://drupal.org/project/views. For
Drupal 5.x, only Views 1 is available, with many additional features, in usability as well
as in basic functionality, added for Views 2, available in Drupal 6.x and beyond. See
http://drupal.org/node/109604 for basic Views 1 Drupal Handbook documentation.
For Views 2, the documents come in a wonderful ‘‘Advanced Help’’ format, which will
be used by an ever-increasing number of modules and perhaps the Drupal core itself.

As explained in the README.txt file accompanying the Organic Groups module, and as can be seen
in Figure 6-8, digging deeper into the Organic Groups configuration page at Administer � Organic
Groups � Organic Groups Configuration, it is possible to customize the layout of the group home page
by enabling an alternative view whose name is prefixed by og_ghp_.

137

Chapter 6: Pushing the Envelope

Figure 6-8

The default view is called og_ghp_ron and implements a ‘‘River of News’’ layout of content items pub-
lished by and for the group. You can ‘‘clone’’ this view and edit it by following these steps:

1. Go to Administer � Site building � Administer Views. At this point, no custom views have
been defined, but by virtue of installing and enabling various modules, there are a host
of default views, including several related to Organic Groups (prefixed by og_). To reuse
og_ghp_ron, you must first add it as a regular view by clicking on the corresponding Add
link (see Figure 6-9). You are then taken to the ‘‘Add a View’’ form.

Figure 6-9

138

Chapter 6: Pushing the Envelope

2. Simply click on the Submit button at the foot of the page to leave this now editable view
unchanged. You are taken back to the Administer � Site building � Administer views page.

3. You are going to create the alternative og_ghp_table view. To start the process, click on the
clone link corresponding to og_ghp_ron, as shown in Figure 6-10. You are taken to the ‘‘Add
a View’’ form.

Figure 6-10

4. In the Name field, enter og_ghp_table. Leave access as is because this is something handled
by Organic Groups access management (dev is a private, closed group unlisted in the group
directory). In the Description field, enter OG: Group home page - Table view. Alternative.
In the Page View section, change the Teaser List to Table View by selecting this entry from
the dropdown list. This now obliges you to deliberately specify the fields making up the
table columns, which is required in any view not having the Teaser List or Full Nodes View
Type.

5. Open up the Fields section. From the Add Field dropdown list, choose Node: Title, and click
on the ‘‘Add Field’’ button to the right. Next choose Node: Type, and click on the ‘‘Add
Field’’ button. Finally, add Node: Author Name, Node: Updated Time, and Node: Edit
link. Fill in suitable entries in the Label fields. Make the first four columns sortable, and set

139

Chapter 6: Pushing the Envelope

Default sort as Ascending for Node: Type. Your Fields section should look something like
that shown in Figure 6-11.

Figure 6-11

6. Scroll down to the bottom of the page without changing anything else for the present, and
click on the Save button. og_ghp_table is now listed in the list of existing views.

7. Now if you go to the Groups directory, click on ‘‘My groups’’ and the dev group link, things
are still as they were before: You will see the River of News layout. However, after you go
to Administer � Organic Groups � Organic Groups Configuration and scroll down to the
Home page presentation subsection of Group details, og_ghp_table is now listed as an alter-
native (by virtue of the naming convention). Select it, click ‘‘Save configuration,’’ and revisit
the dev group. It should be very similar to Figure 6-12. Commit and deploy to the test site.

Views-Sorting Tweak
One of the less intuitive things about using views is that when you designate fields as sortable, as in
Figure 6-11, for example, you expect the resulting displayed table (as shown in Figure 6-12) to actually
be sorted in real time according to how you click on the table column headings. For example, if you click
the Updated heading, you expect the order of the rows to be inverted.

This is not happening, however.

140

Chapter 6: Pushing the Envelope

Figure 6-12

Fortunately, the solution is simple, although it involves a decision and is not at all intuitive. The
solution is:

1. Go to Administer � Site building � Views Administration, and edit the og_ghp_table view.

2. Open up the last section, Sort Criteria, and remove all sort criteria by clicking the waste-
basket icon corresponding to each one (they were placed there in the original design of the
og_ghp_ron view).

3. After doing that and clicking on the Save button, you will find that the sortable table headers
now work.

If you do add even a single Sort Criteria, however, you will find that they will no longer work. You have
to consider the pros and cons on this one.

Now, Where Were We?
How do you ever know where you are on a project (let’s say you have gone to Burning Man at this point,
returned, and are blinking at the project on the screen right now)?

141

Chapter 6: Pushing the Envelope

Just go to Trac, open up the Roadmap, and take a look at the progress bar. As you can see from
Figure 6-13, the Prototype Milestone is done.

Figure 6-13

To see exactly what you are supposed to be doing now, you need to take a look at the user stories assigned
to the current iteration, Beta:

A Workshop Member can post literary pieces.

A Workshop Member can make any post public, private, or visible to an affinity group.

A Workshop Member can critique public posts.

A Workshop Member can browse public pieces and critiques.

A Workshop Member can send and receive messages to and from all Members, Publishers, and
the Workshop Leader.

Creating Role-Specific Navigation Menu Blocks
Much of the functionality involved in the user stories assigned to the Beta iteration already
exists. You need to group what functionality you already have in Navigation menu blocks, which
are only visible to certain roles. In this case, during a discussion with the client, a decision was
made to create several Navigation menus visible only to Administrators, Webmasters, and,
for now at least, the Workshop Leader; and to present these menus as handy simplified navi-
gation blocks, containing only those links the Workshop Member actually needs and is likely
to use.

142

Chapter 6: Pushing the Envelope

The issue should be raised on Trac and added to the Beta milestone task list. To do so:

1. Click ‘‘New Ticket’’ from the top menu bar.

2. Enter Create simplified navigation block for Workshop Members in the Short Summary
field. Make this task of type enhancement to show that it is actually part of change man-
agement, fill in a Full description, and assign it to the current Beta Milestone. The result is
shown in Figure 6-14.

Figure 6-14

3. To implement this in a practical top-down fashion, first go to Administer � Site building �
Menu, and add Groups to the primary menu.

4. Then go to Administer � Site building � Blocks, and click on the Configure link correspond-
ing to the Navigation block that is currently assigned to the left sidebar. Leave the Custom
visibility settings in their default selection (users cannot control whether or not they see this
block), and in the ‘‘Show block for specific roles’’ (no checkboxes are currently checked, so
that the block is visible to all roles) section, select Admin, Webmaster, and Workshop Leader,
then click on the ‘‘Save block’’ button.

5. To create the handy blocks, you could create custom blocks with HTML links, but Drupal
offers a much easier and better way: Any menu you create is immediately available as a
Block that can be made visible in any region on the page. So, back to Administer � Site build-
ing�Menu to create the Places, Groups, and Private Messages menus alongside the Primary
Menu, along the lines of the values in the following table. (As Pam reviewed the implemen-
tation, we made a couple of changes compared to the issue as it was first raised in Trac.)

143

Chapter 6: Pushing the Envelope

Creating Blocks

Menu Menu Item Title Description Path Weight

Primary
menu

Blogs On-Line Literary Workshop
blog central!

blog –10

Groups Group directory og 0

Forums Discussion forums forum 2

Publications On-line books and magazines book 4

Join! Join our literary workshop. node/add/
application

6

Places My Account View your user profile. user 0

Post a literary
piece

Create a new literary piece
and post as public or private.

node/add/
literary-piece

2

Post a forum
topic

Post a new topic to one of the
forums.

node/add/forum 4

Post a blog entry Create a new blog entry. node/add/blog 6

Private messages Browse your private
messages inbox.

privatemsg/inbox 8

Logout End current session. logout 10

Groups My Groups List your subscribed groups. og/my 0

Unread posts New posts to my subscribed
groups.

group 2

Creating the Menus and Navigation Blocks
To create menu Places:

1. Go to Administer � Site building �Menus, and click on the ‘‘Add menu’’ tab. Enter Places
in the Title field, and hit ‘‘Submit.’’

2. Click on the ‘‘Add item’’ link just below the Menu title Places, and add in the My Account
entry. Continue in like manner with the other menu items, the Menu Groups and its menu
items. You should end up with something similar to Figure 6-15.

3. Now enable the menu blocks automatically generated along with the newly created menus
by going to Administer � Site building � Blocks and enabling block Groups in the left side-
bar with a weight of 2, and blocking Places in the left sidebar with weight 1. Click ‘‘Save
blocks.’’

4. Now click on the configure link for Groups and for Places, and select the ‘‘Show block for
specific roles’’ checkboxes for the Admin, Webmaster, Workshop Leader, and Workshop
Member roles (the Publisher role will eventually get its own set of navigation blocks in
another iteration).

144

Chapter 6: Pushing the Envelope

5. Another related touch is to enable the core Tracker module. Go to Administer � Site
building �Modules and in the Core–Optional section, enable the Tracker module (Enables
tracking of recent posts for users) and click on the ‘‘Save configuration’’ button. Now when
user james logs in and goes to My Account, he can see a Track tab along with View and
Edit, and there he can see the posts he himself has made, which most people find very
convenient.

Figure 6-15

The gains in usability can be appreciated in Figure 6-16, which shows user James logged in and visualiz-
ing his profile page.

Commit and deploy!

Browsing and Filtering Views of Literary
Pieces

Here is where you get to apply what you have learned so far in this chapter to the implementation of
Beta Milestone user stories. You have already seen how the Views module allows you to list content
items according to various criteria. One common resource often used by Drupal developers for sorting,
filtering, and listing content items is the Drupal Taxonomy system, with its Vocabularies, which may be
lists of category terms or a set of tags.

In order to implement the user story ‘‘A Workshop Member can browse public pieces and critiques,’’ you
are now going to see how to create a Vocabulary, add a lists of terms to it, and then apply one or more

145

Chapter 6: Pushing the Envelope

terms to each literary piece. Then, using the Views module, you will be creating different kinds of lists of
literary pieces, including an interactive filter and tag clouds using the Tagadelic module.

Figure 6-16

Example: The Beta Milestone
Figure 6-17 shows the one user story not yet implemented for the Beta Milestone: ‘‘A Workshop Member
can browse public pieces and critiques.’’

So here is what you can do to implement this user story:

1. Create the free-tagging folksonomy tagging vocabulary for literary pieces.

2. Create a few literary pieces not designated to any particular private group, created by Work-
shop Members.

3. Use the Tagadelic module to create a ‘‘tag cloud’’ to access literary pieces belonging to a par-
ticular category in ‘‘Rivers of News’’ format.

4. Create a View to list literary pieces not assigned to any particular private group. Apply fil-
ters (i.e., author, tags, date range).

5. Add this View to the Workshop Member Places Navigation menu.

6. Log in as user dev, and go to Administer � Content management � Categories. Here is
where you are going to create a Vocabulary to place literary pieces into various categories

146

Chapter 6: Pushing the Envelope

and to be able to list and filter them accordingly. Click on the ‘‘Add vocabulary’’ tab, and
enter Tags in the Vocabulary Name field. Enter Categories for literary pieces into the
Description field. Select Literary piece as the only Type (content type that will be using these
tags). Select the Free-tagging checkbox, and click Submit.

Figure 6-17

The reader should become thoroughly familiar with the extremely powerful Drupal CMS feature, Vocab-
ulary. A good place to start is the Drupal Handbook article, ‘‘Taxonomy: A Way to Organize Content’’
(http://drupal.org/handbook/modules/taxonomy).

7. Now log in as user james, and click on ‘‘Post a literary piece’’ from the Places menu block.
Now there is a tag field, just under the Title field. Enter a title, a tag (e.g., Haibun), and a
Text. Do not check any audience groups, leaving the post open to the public. Click ‘‘Submit.’’

When you look at the end result (Figure 6-19), you see the tag Haibun to the right under the text. This
means that there are several literary pieces tagged Haibun, and that by clicking on that link, the reader
can see all of them together. You can probably immediately detect a problem of a different kind, that
being that the desired format for the text (see Edit form in Figure 6-18) is ignored in the end result.

Notice that the formatting is not lost — rather, it ‘‘comes back’’ when you edit the piece. But the view of
the text runs all the words together into a single paragraph.

147

Chapter 6: Pushing the Envelope

Figure 6-18

Figure 6-19

148

Chapter 6: Pushing the Envelope

Allowing Filtered HTML Formatting in the Text Area
After investigating for a while to solve this exasperating problem, you will realize that the culprit is the
fact that when we created the field for the text, we did not really configure it correctly for a text area. To
fix this, follow these steps:

1. Go to Administer � Content management � Content types, and edit the Literary Piece con-
tent type.

2. Click on the ‘‘Manage fields’’ tab, and then click on the configure link associated with the
field field_literary_piece_text. Scrolling down to the Text processing options, you can
see that ‘‘Plain text’’ has been selected. That means that when the text is rendered, it is first
passed through a filter that strips off new lines and any kind of HTML formatting. This selec-
tion is fine for single lines of text and in some other cases, but obviously is not appropriate
for literary text.

3. Select ‘‘Filtered text’’ (the user selects the input format). You can do that safely; no data will
be affected. Click on the ‘‘Save field settings’’ button.

Now when user james logs in, the problem is automagically resolved. The formatting is now respected.
And when he edits the literary piece, more options are visible just below the text field. In fact, they explain
what is going on:

Web page addresses and e-mail addresses turn into links automatically.
Allowed HTML tags: <a> <cite> <code> <dl> <dt> <dd>
Lines and paragraphs break automatically.

Logging back in as user dev, explore this in more detail by going to Administer � Site configuration �
Input formats. After carefully reading the information to be found on this page, note the following:

Explore how the input formats can be modified by clicking on the configure link for Filtered
HTML (the default input format when plain text is not used).

Note the filters that make up the input format, and note that the Configure tab allows you to add
more HTML tags that can be included.

The Rearrange tab allows you to specify the order in which filters are applied as text is processed
during the rendering of a content item.

Check out the Drupal Handbook article, ‘‘Text Filters and Input Formats’’ (http://drupal.org/node/
213156), for more information.

Now go ahead and create two or three literary pieces authored by users james and joyce, and put them
into two or three categories by using the tags.

The Tagadelic Module
Now that tags have been applied to several literary pieces, it would be great to easily access those items
by their tags. One way this is commonly accomplished is via a ‘‘tag cloud,’’ and in Drupal, you can do
this too, using the Tagadelic module.

149

Chapter 6: Pushing the Envelope

To do so, first commit (save current state) then use your favorite method for installing the Tagadelic
module. I used drush:

victorkane@victorkane:∼/Work/Wiley/litworkshop$ drush pm install tagadelic
Project tagadelic successfully installed (version 5.x-1.0).
victorkane@victorkane:∼/Work/Wiley/litworkshop$

Go to Administer � Site building � Blocks, and enable tags in Tags in the left sidebar. Click on the ‘‘Save
blocks’’ button. The result can be seen in Figure 6-20.

Figure 6-20

Pam says it would be great if it were possible to replace the default title of the tags in Tags block with
something a little more meaningful to the context. Genre parade would do nicely for now. To comply, log
in as user dev, and go to Administer � Site building � Blocks. Click on the configure tag corresponding
to the tags in Tags block. In the Block title field, fill in Genre parade, and click on the ‘‘Save block’’ button.
Voilá! Commit and deploy.

Creating the View Itself
The next step is to create a View more convenient for listing that is capable of offering more powerful
filtering options. Earlier you modified an existing View to customize the layout of the group home page.
You are now going to make a View from scratch. A View is a query generator, and to make it work, you
have to provide information about which columns of the database table you wish to include and which
search criteria should be invoked to generate the listing. Views also allow you to customize the listings

150

Chapter 6: Pushing the Envelope

layout and look and feel. And the View not only may be invoked via short snippets of PHP code, but also
provides optional block and page renderings. In this case, you are going to use both. Follow these steps:

1. Go to Administer � Site building � Views, and click on the Add tab.

2. Provide a machine-readable name for the view: genre_browser. For now, don’t select any
special access restrictions.

3. Next, add a short description: Allows the user to browse literary pieces according to genre.

4. Open the Page section, and select the ‘‘Provide Page View’’ checkbox. Specify a URL for the
page: browse/genre. For the View Type, select Table View. Type Browse literary pieces
according to genre in the Title field for the page. Leave the rest of the page items as they
are for now at least.

5. Open the Block section. Select the ‘‘Provide Block View’’ checkbox. Here, too, select Table
View, and enter Browse Literary Pieces as the Title for the block. Put 5 as the maximum
number of items to display, and select the More link checkbox.

6. Because you are using the Table View, you need to specify which fields you want displayed
as columns in the table. Select Node: Title, and click on the ‘‘Add Field’’ button. Type Name
in the Label field. Next, add Taxonomy: Terms for Tags, and enter Genre in the Label field.
Then, add the fields Node: Author name (Label: Author) and Node: Updated time (Label:
Date).

7. Now you just need to specify which content type (node type) you wish displayed; otherwise,
all nodes will be displayed. Open the Filters section, and add the Node: Type filter. After
clicking on the ‘‘Add field’’ link, select Literary Piece in the Value column. In this way, only
nodes of type Literary Piece will be included in the listing.

8. Take a look at what you have up till now. Scroll down to the bottom of the page, and click
on the Save button. To view genre_browser in page view first, click the URL browse/genre.
You should see something similar to Figure 6-21.

9. Two adjustments would be welcome here. Because this is a table view, the number of items
per page can be doubled. And the table headings need to be made sortable. Click on the Edit
tab, and in the Page section, specify 20 in the ‘‘Nodes per Page’’ field. Then, in the Fields
section, select Yes in the Sortable column for Name, Author, and Date.

10. After saving your work, you can now click on the Name, Author, and Date columns to sort
the listings table in real time.

11. Now check out the Block View. Go to Administer � Site building � Blocks, and you will see
that a new block has appeared, bearing the name genre_browser. First, click on the configure
link, specify Browse genre as the title of the block itself, and click on the ‘‘Save block’’ but-
ton. Then enable it for the content region (it’s too wide for the left sidebar region, and it is
fashionable these days to put navigation blocks at the foot of the page after the page content)
with a weight of 1. Click on the ‘‘Save blocks’’ button.

12. To finish up the current task, you just need to add the View you have tried out onto the
Places navigation menu for Workshop Members. To do so, go to Administer � Site build-
ing �Menus, and click on the ‘‘Add item’’ link just under the Places heading. Enter Browse
by genre in the Title field, enter Browse literary pieces by genre in the Description field, and
enter browse/genre (the URL of the page view) in the URL field. Specify a weight of 9, and
click ‘‘Submit.’’

151

Chapter 6: Pushing the Envelope

Figure 6-21

13. Now the user can click on the Browse by Genre link in the Places menu, and visualize the
listings (20 per page) while the shorter block (first 5 entries) appears on all pages. There is
just one thing you need to fix up a little, which is to prevent the block from appearing when
the page view does. Go to Administer � Site building � Blocks, click on the configure link
corresponding to the genre_browser block, and scroll down to the Page specific visibility
settings section. There, select ‘‘Show on every page except the listed pages’’ (the default),
and enter browse/genre in the Pages text area. While you’re at it, add admin and admin/*
on the separate, second, and third lines. Click on the ‘‘Save block’’ button.

Now, when you select ‘‘Browse by genre’’ from the Places navigation menu, the block ceases
to appear, while it does appear on every other page, except administration pages.

14. Commit and deploy.

Using Exposed Filters with the View
The View is fine as far as it goes. The thing is, though, you want to be able to sort what is on the current
page in various ways — What if the user would like to filter the content also? Also, this would enable
filtering by genre, which does not support real-time sorting.

The solution is to add what the Views module calls Exposed filters. To do this, follow these steps:

1. Logged in as user dev, select the page view, and click on the Edit button.

2. Scroll down to the Filters section, and add the following filters under the previously selected
Node: Type:

152

Chapter 6: Pushing the Envelope

Node: Title

Taxonomy: Terms for Tags

Node: Author Name (for now, select any name to avoid error messages)

3. For each one of these, click on the Expose button.

4. Open the Exposed Filters section, and fill in the Labels: Name, Genre, and Author. And
(important!) select the checkbox in the Optional column for each of the exposed filters. Click
on the Save button. The View will now work with exposed filters. Click on the ‘‘Browse by
genre’’ Places navigation menu, and you should see results similar to Figure 6-22, where a
search has been made for all the Haikus written by user james whose titles contain the text
string Haiku.

Figure 6-22

Using Categories and Tag Clouds for Project Management
When you download the chapter tarball, you will see that the author has done the same thing for user
stories — creating two vocabularies, one for types of users (‘‘User Stories by Actor’’), and another for iter-
ations (‘‘User Stories by Iteration’’). Instead of using the free-tagging option, these are single-hierarchy
vocabularies to which a fixed, editable series of terms has been added. The ‘‘User Stories by Actor’’
categories, or terms, allow for multiple selections. Explore them by visiting Administer � Content man-
agement � Categories, and see how they are used in the various user stories published in the dev group.
Two simple Tagadelic module-based tag clouds appear when the dev group home page is visited.

153

Chapter 6: Pushing the Envelope

Summary
In this chapter, you pushed the envelope by adding a large amount of functionality, involving private
messaging and affinity groups with their own home page. You also saw the use of the system for project
management itself in a variety of ways, something that served admirably as an introduction to the power-
ful Views module, which complements the Content Construction Kit module you had been using earlier.
This module was used to complete the implementation of the user stories corresponding to the Beta Mile-
stone, including a sophisticated listing of literary pieces capable of being sorted and filtered interactively
by the site visitor.

In the next chapter, you will explore additional ways of adding functionality, but first and foremost, you
will be introduced to the art of becoming an expert Drupal themer in order to give the website application
the look and feel desired by the client.

154

Becoming an Expert Drupal
Themer

One of the compelling reasons for using Drupal is that it allows you to cleanly override the layout
and look and feel of your website, a practice generally referred to as theming. This chapter explains
how to do this by following ‘‘The Drupal Way.’’ By understanding how Drupal renders a page,
how the content is passed to the theming component of the system, and exactly where and how
developers and specialized graphic design people can conveniently affect the final outcome, you
can become an expert Drupal themer.

However, our emphasis on theming doesn’t mean that we are concerned with graphic design in this
chapter. You are not going to come out with a shiny new theme for Drupal here. But you are going
to learn how to use existing themes, even bare-bones skeleton themes, and how to use the Drupal
theming system to your best advantage.

On to Theming
So where are we? So far, the following two iterations have been completed:

1. Prototype

A Workshop Leader can approve applications to join the workshop.

A Workshop Leader can suspend members and publishers.

A Workshop Leader can manage affinity groups.

A Workshop Leader can broadcast messages to members.

A Workshop Leader can do everything Workshop Members and Publishers can do.

Clean URLs and automatic generation of SEO friendly paths

Chapter 7: Becoming an Expert Drupal Themer

2. Beta

A Workshop Member can post literary pieces.

A Workshop Member can make any post public, private, or visible to an affinity group.

A Workshop Member can critique public posts.

A Workshop Member can browse public pieces and critiques.

A Workshop Member can send and receive messages to and from all Members and
Publishers and the Workshop Leader.

Create simplified navigation blocks for Workshop Members.

The current iteration is now as follows:

3. Final release

A Workshop Member can start an affinity group with its own forums.

A Workshop Member can post to forums.

A Workshop Member can maintain his or her own literary blog.

A Publisher can browse public content.

A Publisher can broadcast a call for pieces to be submitted for a publication.

A Publisher can select content for inclusion in a publication.

A Publisher can manage an on-line publication.

A Publisher can manage an on-line blog.

4. Initial theming

The last task reflects the fact that in order to launch the site, you need to polish the presentation — have
content meet form in an established manner of navigation, searching, layout, color, typography, and look
and feel.

It is getting to the point where the architecture and the implementation of the On-Line Literary Workshop
have reached a considerable level of complexity.

So here is where the question of theming in Drupal raises its alluring head, and once it is brought in, it
will affect the implementation of all other user stories. At this point, you need to deal with it as soon as
possible. To get the website done right, your team needs expertise in Drupal theming.

But, what is Drupal theming, precisely?

Dividing and Conquering Complexity
In July 2006, a team of IBM developers chose to base their ‘‘Using open source software to design,
develop, and deploy a collaborative Web site’’ project on Drupal, rather than six other Open Source
content management solutions. In Part 1 (www.ibm.com/developerworks/ibm/library/i-osource1) of
what turned out to be a 15-part series (www.ibm.com/developerworks/ibm/osource/implement.html?
S_TACT=105AGX46&S_CMP=LP), the team explain their reasons for choosing Drupal — then in version 4.7,
even though Part 15 of the series covers Drupal 5.x — over its competitors. Although time has passed

156

Chapter 7: Becoming an Expert Drupal Themer

since then, one of the stringent requirements listed by the team was ‘‘separation of presentation and
content.’’ With Drupal, they said,

The ability to use PHP to move freely between the business logic layer and the presentation
layer (using the PHP template engine) was . . . very appealing.

It is important to understand what is meant here if you wish to leverage ‘‘The Drupal Way.’’ Whereas
many learned tomes have been written on the subject of multi-tier and layered architecture and the
benefits offered by progressive stages of abstraction in the history of software engineering, and justifiably
so, perhaps the clearest and simplest exposition for your purposes here is a short article, ‘‘Separation: The
Web Designer’s Dilemma,’’ by Mike Cohen (www.alistapart.com/articles/separationdilemma) in
May 2004 in A List Apart, an important on-line magazine ‘‘for people who make websites.’’ The concepts
explained in this article are fundamental in understanding why things are the way they are, and rightly
so, in the Drupal theming system.

A Word on Multi-Tier Architecture and Abstraction
Regarding multi-tier, in software applications in general and in website applications
and Drupal in particular, there exists a topology of physical layers that share logical
responsibility for the work of rendering a page. In the world of software in general,
a ‘‘three-tier’’ approach would involve the separation of data persistence, logical pro-
cessing, and the presentation layer. In website applications, this is embodied in the
separation of the database, the web server, and the application logic for which Drupal
has responsibility, on the one hand, and then an additional separation within Drupal
between the content being marshaled and then being cleanly passed over to a sepa-
rate procedure specializing in presentation, that is, the layout and look and feel of a
requested page. This will be explained more fully in this chapter.

The multi-tier approach itself is based on what is called the Separation of Concerns, which
divides complicated problems into more manageable and reusable components, which
are easier to maintain and scale because they don’t interfere with each other. Students
of the object-oriented approach will immediately recognize this as an example of the
principle of Abstraction. Grady Booch (www.booch.com/architecture/index.jsp)
sums it up very well in the following words:

Software development has been, is, and will likely remain fundamentally
hard. To that end, the entire history of software engineering is one of rising
levels of abstraction (for abstraction is the primary way we as humans
deal with complexity), and we see this reflected in the maturation of our
programming languages, platforms, processes, tools, and patterns.

In distinguishing presentation from structure and content, Cohen writes: ‘‘The major reason to separate
presentation from the rest of the page is simple: to simplify any change from a slight design adjustment
to a full-fledged redesign.’’ The famous CSS Zen Garden (www.csszengarden.com) is cited as a starting
point, in that the same content is presented in multiple and beautiful ways by changing nothing more
than the invoked CSS style sheet. There is a wonderful list of CSS learning resources of all kinds, and in
many different languages to boot, at www.w3.org/Style/CSS/learning. But you must bear in mind that
the ability to use HTML tags ‘‘to provide a handle for the designer to apply styles to’’ is also part of the
picture.

157

Chapter 7: Becoming an Expert Drupal Themer

‘‘Isolation of content,’’ he adds, ‘‘makes adding or updating things easy while maintaining presentational
consistency throughout the site.’’ The content includes semantic tags (‘‘like h1-h6, paragraphs, list, em,
strong, code, cite, etc.’’) and ‘‘should not require any additional presentational tags or styles in order to
fully convey its message.’’

Structure, then, includes ordered and unordered lists and <div> building blocks. But ‘‘presentation is
pointless without structure . . .[and] it’s also pointless to try to separate structure from content.’’ This is
because tags like the paragraph tag and heading tags not only set out the structure of a rendered page
but also ‘‘the browser has a preset way of displaying <h1> and <p> text, doesn’t it?’’

This means that presentation necessarily combines layout and style, ‘‘which leaves us with . . .presentation
and content.’’

What is fascinating from the point of view of using Drupal as the basis for getting your site done right
is what Mike Cohen lays out as ‘‘the perfect website separation system’’:

It would store content in a database, allowing the isolation and management of content infor-
mation. Presentation and structure would be handled together; presentation could be managed
with a stylesheet and accompanying structural elements where needed. Structure would best
be dealt with through a system of template ‘‘packages’’ built using a server-side scripting lan-
guage (such as PHP or ASP). Each template ‘‘package’’ could have one or more stylesheets
(e.g. CSS Zen Garden), but every template ‘‘package’’ would connect to the same . . .database
to retrieve content for display.

Drupal successfully offers these characteristics: that is what the Drupal theming system is all about, and
it is made up of the following:

The selected theme engine that interfaces to Drupal core

Theme template files written in the corresponding template language

Theme style sheets and other theme resources

How does this work? In the following manner: given a semantic element created by Drupal core
or a contributed module (say, an image, a block, a link, or a breadcrumb), the module instantiating
and controlling the database persistence of that structural element includes a theming function,
prefixed, appropriately enough, with the prefix theme_. So, for example, you have theme_image(),
theme_item_list(), and theme_links() in the component ./includes/theme.inc, as well as
theme_forum_list() in the forum.module. The wonderful Drupal Documentation folks have
provided a list of themeable functions for your use and pleasure; for Drupal 5.x, for example, see
http://api.drupal.org/api/group/themeable/5. What’s that? ‘‘Themeable functions’’? Well, you
see, what you do to modify one of these (e.g., if you don’t like the default manner of handling images)
is to copy the theme_image() function, lock, stock, and barrel (sorry, this isn’t OOP, it just acts like
it — which is great for our purposes), and you change its name! You stick it in your theme (you’ll see an
example shortly — your overriding version of the theming function will be placed in a special file called
template.php) and rename it by replacing the theme_ prefix with your theme’s name. So, here is the default
theming function for images for Drupal 5 (see http://api.drupal.org/api/function/theme_image/5
and tabs for other Drupal releases):

<?php

function theme_image($path, $alt = ‘’, $title = ‘’, $attributes = NULL,
$getsize = TRUE) {

158

Chapter 7: Becoming an Expert Drupal Themer

if (!$getsize || (is_file($path) && (list($width, $height, $type,
$image_attributes) = @getimagesize($path)))) {

$attributes = drupal_attributes($attributes);

$url = (url($path) == $path) ? $path : (base_path() . $path);

return ‘<img src="’ . check_url($url) . ‘" alt="’
. check_plain($alt)

. ‘" title="’ . check_plain($title)
. ‘" ‘ . $image_attributes .

$attributes . ‘ />’;

}

}

?>

And here, just by way of an example (you will see some working examples for our litworkshop site in
a moment), is the ‘‘make images square’’ snippet for an imaginary newsphoto theme, from the Drupal
Handbook Documentation (from http://drupal.org/node/21811):

/**

* Make images square.

*/

function newsphoto_image($path, $alt = ‘’, $title = ‘’,
$attributes =

’’, $getsize = true) {

// Always do getimagesize.

if ($path && (list($width, $height, $type,
$image_attributes) =

@getimagesize($path))) {

//$sizes = _image_get_sizes();
// To get the below stated IF dynamically filled.

foreach (_image_get_sizes() as $size) {

if(in_array($height, $size) ||

in_array($width, $size) ||

in_array($height + 1, $size) || // Rounding can cause the
// displayed to be one pix bigger or smaller then the size in
// image_get_sizes.

in_array($width + 1, $size) ||

in_array($height - 1, $size) ||
in_array($width - 1, $size)) {

159

Chapter 7: Becoming an Expert Drupal Themer

// The difference between the real height and the pico height,
// divided by 2 with a border of 2 pixels.

$height = round(($size[’height’] - $height)/2)+2;

$width = round(($size[’width’] - $width)/2)+4;

$attributes[’style’] .= ‘padding:’. $height .’px ‘. $width .’px;’;

break;

}

}

}

return ‘<img src="/’ . check_url($path) . ‘" alt="’
. check_plain($alt)

. ‘" title="’ . check_plain($title) . ‘" ‘ . $image_attributes .
drupal_attributes($attributes)

. ‘/>’;

}

?>

As the snippet explains, this function goes in the file template.php in your theme directory, assuming
that you are using the default PHPTemplate theme engine in order to override the default mechanism.

So how does that work? To understand that, you need to understand the life cycle of a rendered page
and its dynamic structure.

And, of course, to be an expert Drupal themer, you need to comprehend the different kinds of work and
levels of expertise corresponding to the different layers and components making up the Drupal theming
system spanning the rendering of that page.

So, a typical page is rendered, first, by marshaling its dynamic content from the database, then by struc-
turing it according to a given layout, as specified in your Drupal theme, and finally, it is styled in detail
and presented in the browser, again, according to what is specified in your Drupal theme.

Understanding Dynamic Content
In general terms, what happens when you point your browser at the URL http://litworkshop.
example.com/texts/joyce/elegy-tired-lakes?

The request is sent by your browser using the HTTP protocol to port 80 of the server in the Internet,
whose IP address resolves to http://litworkshop.example.com. Assuming that an Apache HTTP
server is listening on that port, this server will come to the conclusion that no file exists in the filesystem
corresponding to the full URL, and so will search for an index.php or index.html or similar file
(according to the Apache configuration) in the document root of the filesystem corresponding to
http://litworkshop.example.com. There it finds Drupal’s index.php file, which it then invokes,
handing it the parameter texts/joyce/elegy-tired-lakes, effectively telling Drupal to do what it likes
with it.

160

Chapter 7: Becoming an Expert Drupal Themer

Drupal then goes through its bootstrap, or initiation process, and examines the parameter handed it by
the Apache server. It recognizes texts/joyce/elegy-tired-lakes as an alias, or synonym, for node/35
(the thirty-fifth content item created in the system) and notes that the operation is not edit, add, or delete,
but rather that the request is to view a node.

Given the node ID (35), Drupal loads, or reads, the latest revision of the record from the database and
places it into a dynamic node object. It then asks all enabled modules whether they have more data
to add before the load process is complete (a module can get in line by implementing the hook_load
function, which boils down to writing a php function with the name {name_of_module}_load(), which
adds certain data to the node object.

A similar process then ensues in which those modules that have implemented hook_nodeapi and are
watching out for the load operation are allowed their moment to add additional data to the node object.
The title of the node is then reserved for use as the title of the page being rendered.

Drupal will now apply the appropriate theming function to each structural entity up to and including the
node level, by invoking theme(structual_entity_name, $data_to_output). In its inimitable way, very
sophisticated support for polymorphism is implemented very simply, thus guaranteeing separation of
content from presentation in a highly flexible manner. The convention is to climb up the various theming
levels by asking if a theming function is available. When the polymorphic ‘‘theme’’ function is invoked,
basically with the type of structural element and the data to be rendered as parameters, Drupal looks on
the current theme level to see if there is a theme-level function in existence (mytheme_image()). If there is
none, it looks to the theme engine, to see if it has a default function. If none is available there, then (and
only then) the primitive Drupal theming function itself is called.

Polymorphism: ‘‘many shapes’’ for the same thing (for the same name), all bound up in a common
interface (see http://en.wikipedia.org/wiki/Polymorphism_(computer_science)). For Drupal
theming, polymorphism is implemented via a series of naming conventions, as explained below.

So that is why, in order to override how a Drupal image element is rendered, you cut and paste the
primitive Drupal theme_image() into your theme (e.g., in the template.php file in your newsphoto theme
directory), rename it mytheme_image(), and have at it! This is all without hacking the default behavior
specified in Drupal core, which can be restored or disabled by going to Administer � Site building �
Themes and enabling, making default, and configuring any of the themes that come with the standard
Drupal release (found in ./themes) or any others you care to download or create yourself (usually placed
in ./sites/all/themes).

Specifying Structure
Drupal comes with the Garland theme enabled by default. How does the Garland theme specify the
structure (layout and positioning of structural elements) of the rendered page? Well, actually, you already
know a bit about this. Figure 7-1 shows our On-line Literary Workshop in all its structural glory. Notice
the shiny new footer message! To include it, go to Administer � Site configuration � Site information,
and paste something like the following into the Footer message field:

Powered by<img src="/images/drupal-
favicon.ico" alt="Drupal rocks!" title="Drupal rocks!" />Drupal

You can see that the page consists of several structural elements (each with its own dynamic content)
placed in a series of regions (available using the PHPTemplate engine since Drupal 4.7).

You can easily identify these elements and regions if you take a look at the page template file
./themes/garland/page.tpl.php, in the Garland theme directory (see Listing 7-1).

161

Chapter 7: Becoming an Expert Drupal Themer

A

D
H

I

J

K
L

E

F

G

B C

Figure 7-1

Listing 7-1: The Annotated page.tpl.php (Garland) page template.

The DOCTYPE (document type declaration) says "XHTML 1.0 Strict, Transitional,
Frameset" and has a proper non-relative link to www.w3.org

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

xmlns attribute required in XHTML; standard attribute lang sets the language code

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php print $language ?>"
lang="<?php print $language ?>">

$head_title for dynamic content of title tag

<head>
<title><?php print $head_title ?></title>

HTML generated by the theme for the head tag, with Drupal core and enabled modules
having their chance to add in whatever is necessary

<?php print $head ?>

Invocation of all CSS styles and Javascript inclusions, again with each module
getting their chance to alter things.

<?php print $styles ?>
<?php print $scripts ?>

The theme adds in its print media stylesheet.

<style type="text/css" media="print">@import "<?php print base_path() .
path_to_theme() ?>/print.css";</style>

<!--[if lt IE 7]>

162

Chapter 7: Becoming an Expert Drupal Themer

<style type="text/css" media="all">@import "<?php print base_path() .
path_to_theme()
?>/fix-ie.css";</style>

<![endif]-->
</head>

Special classes added to body tag as handles for designer styling.

<body<?php print phptemplate_body_class($sidebar_left, $sidebar_right); ?>>

The layout nitty gritty.

<!-- Layout -->

The header is printed out, the first region to be dealt with, including the blocks
enabled for that region.

<div id="header-region" class="clear-block"><?php print $header; ?></div>

<div id="wrapper">
<div id="container" class="clear-block">

<div id="header">
<div id="logo-floater">
<?php

// Prepare header
$site_fields = array();
if ($site_name) {
$site_fields[] = check_plain($site_name);

}
if ($site_slogan) {
$site_fields[] = check_plain($site_slogan);

}
$site_title = implode(’ ‘, $site_fields);
$site_fields[0] = ‘’. $site_fields[0] .’’;
$site_html = implode(’ ‘, $site_fields);

if ($logo || $site_title) { // element "A"

The logo ("A") and site title ("B") are displayed in the header if enabled.

print ‘<h1><a href="’. check_url($base_path) .’" title="’. $site_title
.’">’;

if ($logo) {
print ‘<img src="’. check_url($logo) .’" alt="’. $site_title .’"

d="logo"
/>’; // element "B"

}
print $site_html .’</h1>’;

}
?>
</div>

The primary ("C") and secondary menus are displayed if enabled.

<?php if (isset($primary_links)) : ?>
<?php print theme(’links’, $primary_links, array(’class’ => ‘links primary-

links’)) ?>
<?php endif; ?>
<?php if (isset($secondary_links)) : ?>

<?php print theme(’links’, $secondary_links, array(’class’ => ‘links
secondary-

163

Chapter 7: Becoming an Expert Drupal Themer

links’)) ?>
<?php endif; ?>

</div> <!-- /header -->

The left sidebar is displayed, containing those blocks ("D-E-F-G") enabled for
this region.

<?php if ($sidebar_left): ?>
<div id="sidebar-left" class="sidebar">

<?php if ($search_box): ?><div class="block block-theme"><?php print
$search_box ?></div><?php endif; ?>

<?php print $sidebar_left ?>
</div>

<?php endif; ?>

<div id="center">
<div id="squeeze">

<div class="right-corner">
<div class="left-

corner">

The breadcrumb (not shown on front page).

<?php if ($breadcrumb): print $breadcrumb; endif; ?>

The mission statement ("H").

<?php if ($mission): print ‘<div id="mission">’. $mission .’</div>’;
endif; ?>

The tabs (View | Edit | etc.) (not shown on the front page or for non-
authenticated users) and the Title for the content.

<?php if ($tabs): print ‘<div id="tabs-wrapper" class="clear-block">’;
endif;
?>

<?php if ($title): print ‘<h2’. ($tabs ? ‘ class="with-tabs"’ : ‘’) .’>’.
$title .’</h2>’; endif; ?>

<?php if ($tabs): print $tabs .’</div>’; endif; ?>
<?php if (isset($tabs2)): print $tabs2; endif; ?>

On some pages a help text is shown.

<?php if ($help): print $help; endif; ?>

Info area for system messages (when content is saved, for example, or if
obligatory fields are missing on forms).

<?php if ($messages): print $messages; endif; ?>

The content itself! ("I")

<?php print $content ?>

RSS Feed icons ("K") for content (main site feed since this is front page).

<?php print $feed_icons ?>

The footer ("L").

<div id="footer"><?php print $footer_message ?></div>
</div></div></div></div> <!-- /.left-corner, /.right-corner, /#squeeze,

/#center -->

164

Chapter 7: Becoming an Expert Drupal Themer

The right sidebar is displayed, containing those blocks enabled for this region.

<?php if ($sidebar_right): ?>
<div id="sidebar-right" class="sidebar">

<?php if (!$sidebar_left && $search_box): ?><div class="block block-
theme"><?php print $search_box ?></div><?php endif; ?>

<?php print $sidebar_right ?>
</div>

<?php endif; ?>

</div> <!-- /container -->
</div>

<!-- /layout -->

This contains any HTML which a module wants to include just before the closing
body tag. Useful sometimes for javascript and for placing certain CSS id’s and
classes.

<?php print $closure ?>
</body>

</html>

In this way, structural elements are positioned in a given layout and printed out as the content
of certain variables. For a complete list of variables available in the page.tpl.php template, see
http://drupal.org/node/11812.

To see the various regions available, simply go to Administer � Site building � Blocks, which is where
you enabled the views-generated genre_browser block in the Content region. See Figure 7-2.

Now, how are these regions created, exactly, and what determines their layout? Well, a few things, which
are related in the following sections.

Creating Additional Regions
The default regions are defined in the PHPTemplate theme engine itself (other theme engines,
much less commonly used, may or may not support regions, but PHPTemplate is the default and
the most often used), specifically in the following snippet taken from around line 20 from the file
./home/victorkane/Work/Wiley/litworkshop/themes/engines/phptemplate/:

/**
* Declare the available regions implemented by this engine.
*
* @return
* An array of regions. The first array element will be used as the default

region for
themes.
*/

function phptemplate_regions() {
return array(

‘left’ => t(’left sidebar’),
‘right’ => t(’right sidebar’),
‘content’ => t(’content’),
‘header’ => t(’header’),
‘footer’ => t(’footer’)

);
}

165

Chapter 7: Becoming an Expert Drupal Themer

Figure 7-2

Now, if you want to add custom regions, you edit this file, right? Wrong! You override the regions with
your own definition, in your own theme. Honoring the same self-styled ‘‘Drupal Way’’ polymorphism
based on naming conventions, as seen in the case of theming functions, the theme can override the speci-
fication of regions by copying it and pasting it into the file template.php, and renaming the function with
the name of the theme as prefix.

Let’s do that keeping in mind that you don’t want to go hacking the Garland theme shipped with the
system either. The best practice is to copy the whole theme directory and rename it as your very own.

Copy the Garland theme (./themes/garland) to a suitable directory in our own versioned project area,
for example, ./sites/all/themes/litgarland. Either copy the Garland theme directory directly, or do the
following, as a quick and dirty way of copying and doing away with all the CVS subdirectories (if you

166

Chapter 7: Becoming an Expert Drupal Themer

checked out Drupal core from the Drupal CVS repository, as recommended, so as to upgrade more
easily):

victorkane@victorkane:∼/litworkshop/themes$ cp -R garland ../sites/all/themes/
victorkane@victorkane:∼/litworkshop/sites/all/themes$ mv garland litgarland
victorkane@victorkane:∼/litworkshop/sites/all/themes$ find litgarland \(\(-name
CVS -type d \) -o -name .cvsignore \) -exec rm -rf {} \;

Let’s switch over to our very own newly created Garland-based litgarland theme by logging in as user
dev, going to Administer � Site building � Themes, and enabling and finally making it default and
hitting the ‘‘Save configuration’’ button, as shown in Figure 7-3.

Figure 7-3

Well, nothing much has changed, but you can change that right away by interactively picking a color.
Pam was talking about Royal Blue the last time we mentioned the question of color scheme, so do the
following:

1. Go to a color scheme site, such as the ‘‘[ws] Color Scheme Generator’’ (http://wellstyled
.com/tools/colorscheme2/index-en.html), and specify Royal Blue (#3333FF) after clicking
on ‘‘Enter RGB.’’ Nice. That gives you a four-color coordinated scheme: #5050FF, #3838B3,
#D3D3FF, and #A7A7FF.

2. After clicking on the ‘‘Reduce to ‘safe’ colors ’’checkbox, you get #6666FF, #3333CC, #CCC-
CFF, and #9999FF.

167

Chapter 7: Becoming an Expert Drupal Themer

3. Now, in Drupal, click on the Configure link corresponding to the litgarland theme,
and you will be taken to the configuration screen for litgarland, as seen in Figure 7-4.
W00t! An interactive color picker (courtesy of Steve Wittens, coauthor of the theme; see
http://drupal.org/node/91964 for details on the Garland theme and its features)!

4. I put #3333CC as both the Base color and the Link color, #6666FF for the Header top, and
#CCCCFF for the Header bottom. Then, I entered my favor Text color #444444 and clicked
on the ‘‘Save configuration’’ button. Now, graphic design is not my strong suit, so you might
want to pick one of the 15 garish-to-subtle pre-defined Color sets. The interesting thing is
that, when you list all the themes, the new color scheme shows up as the theme preview!
Very cool.

Figure 7-4

Adding a Quote Region
So let’s add our own region. Pam has mentioned that she would like a ‘‘quote of the day from a famous
author’’ for all pages except the front page, and that it should go where the front-page Mission statement
goes.

Well, there is a Quotes module (http://drupal.org/project/quotes) that looks active and cool, and
that generates blocks. But, hey, roll your own by listing a random quote with a nodequeue. The Node-
queue module is also part of the quiet revolution of modules revolutionizing Drupal (CCK, Views 2,
Panels 2, Nodequeue, OG, etc., etc., etc.):

1. Create a content type for the quotes so that Pam can create some of them herself. To make
this Agile, instead of making one of the fields of type text, you can create a new free-tagging

168

Chapter 7: Becoming an Expert Drupal Themer

multiple-select Vocabulary called Authors. So create a content type called Quote, using the
title field itself for the quote (change the label to Quote), and use the default body field for a
description and background (change the label to Background).

2. Deselect ‘‘Promoted to front page’’ (because even though you want it on the front page, you
don’t want it as a node but, rather, as part of a block inside our new region), and select ‘‘Cre-
ate New Revision.’’

3. Disable comments, and make it non-postable to any group. This should be fine for what Pam
is looking for. (The content type is included in the downloadable material for this chapter,
both as part of the Drupal instance and as an exported content type.)

4. To create the Authors vocabulary so that terms (‘‘authors’’) can be selected for various
quotes, go to Administer � Content management � Categories, and click ‘‘Add vocabu-
lary.’’ For the vocabulary name, enter Authors. Enter Authors of quotes, as used in quote
of the day in the description field. Enter Multiple authors can be selected in the Help text
field. Select Quote as the only Type that authors can be applied to (so while creating or
modifying a Quote, the dropdown selection box will appear for authors).

5. Finally, select the ‘‘Free tagging,’’ ‘‘Multiple select,’’ and ‘‘Required’’ checkboxes, and press
the Submit button.

I ran into a problem after creating my first quote, though. The URL was http://litworkshop
.victorkane/content/i-love-deadlines-i-whooshing-sound-they-make-they-fly. But I would like
the word content to be replaced by quote, so that all my quotes are recognizable right in the URL. To fix
this, go to Administer � Site configuration � Pathauto, and open up the Node path settings section. In
the ‘‘Pattern for all Quote paths’’ field, enter

content/[title-raw]

After re-editing, the result should look like Figure 7-5.

So create a few more quotes, just to get the ball rolling. What is cool is that when you reuse an author, you
get an automatic dropdown selection list as soon as you type in the first couple of letters in the Author
field. That’s because in free-tagging vocabularies, the automatic completion widget is used. Figure 7-6
shows this when I added my second Brian Aldiss quote.

Then create a quick View to simply list all your quotes on a page:

1. Go to Administer � Site building � Administer views, click on the Add tab, and enter
quotes into the Name field.

2. Put List all quotations into the Description field. Open up the Page section, select the ‘‘Pro-
vide Page View’’ checkbox, and enter valist-quotes into the URL field. Select ‘‘List View’’ for
View Type.

3. Now open up the Fields section, and add the Node title and Taxonomy Terms for Authors.

4. Next, open the Filters section, and add a Node-type filter. Specify that ‘‘Node: Type’’ Is One
Of Quote. Click ‘‘Save.’’

5. Click on the list-quotes link, and you should see something like Figure 7-7.

Now, because the idea is to create a new region and to stick a random quote in it on every page except
the front one, you need to do two things: create the block, then create the region and stick the block there.

169

Chapter 7: Becoming an Expert Drupal Themer

Figure 7-5

Figure 7-6
170

Chapter 7: Becoming an Expert Drupal Themer

Figure 7-7

Populating the Quote Region with a Custom Block
First, then, you need the Nodequeue module. You can install it by using the methods presented in earlier
chapters, or your own favorite. I used Drush in the following way:

victorkane@victorkane:∼/litworkshop$ drush pm install nodequeue --svnsync
--

svncommit
Project nodequeue successfully installed (version 5.x-2.2).
Project committed to Subversion successfully
victorkane@victorkane:∼/litworkshop$

Next you follow these steps:

1. Go to Administer � Site building �Modules, and enable the module. Now go to Admin-
ister � User management � Access control, assign administer nodequeue permissions to
the Admin role, and manipulate all queues and manipulate queues permissions to both the
Admin and Workshop Leader roles.

2. Now to create the block containing a single random quote, go to Administer � Content man-
agement � Node queue, and hit the ‘‘Add node queue’’ tab.

3. In the Title field, enter Random Quotation, then use 0 as the Queue Size (no limit). Inside
the ‘‘Link for ‘add to queue’ Text’’ field, type Add this quote. Similarly, for the field called
‘‘Link For ‘remove from queue’ Text,’’ enter Remove this quote entry.

171

Chapter 7: Becoming an Expert Drupal Themer

4. Enable the appropriate roles so you can add nodes to the queue, and select ‘‘Quote’’ as the
type of node to be added to the queue. Click on the Submit button. The queue has now been
created. [If the Nodequeue module has just been installed, be sure to visit Administer � User
management � Permissions (Access Control in Drupal 5), and grant permission to manipu-
late queues.]

5. Now, at Administer � Content management � Node queue � View (tab), use the
automatic-completion (thank goodness) ‘‘Select title to add field’’ to add all your quote
nodes to the queue. Or, as you add quotes, once you create them, you can click on the Node
Queue tab that now appears alongside the View, Edit, and other node access tags, and then
click the ‘‘Add to queue’’ link for the Random Quotation nodequeue.

6. Go to Administer � Site building � Blocks, and click on the ‘‘Add block’’ tab. Enter Random
Quotation in the ‘‘Block description,’’ and the following PHP code exactly as written into the
Block body (it simply instructs the Nodequeue module to fetch a random content item from
nodequeue 1, which we have just created):

<?php print nodequeue_fetch_random(1); ?>

7. Open the Input format section just below the text area, and select the PHP code input format
(otherwise the PHP will not get executed). Then click on the ‘‘Save Block’’ button. You will
now see the Random Quotation block listed with the other disabled blocks.

8. For texting purposes, enable the block in the header region, and click on ‘‘Save Blocks.’’

Now, every time you refresh your browser, you’ll get a different quote in the header region. It’s not
where you want it, and it’s not formatted like you want it, but it works! Great start.

Enabling the Block in a New Region
In a moment, you will see various ways to control the formatting. For now, the objective is to create a
new region on the page and enable this block there.

To register the new block, you need to copy the following code from ./litworkshop/themes/engines/
phptemplate/phptemplate.engine:

/**
* Declare the available regions implemented by this engine.
*
* @return
* An array of regions. The first array element will be used as the default
* region for
themes.
*/

function phptemplate_regions() {
return array(

‘left’ => t(’left sidebar’),
‘right’ => t(’right sidebar’),
‘content’ => t(’content’),
‘header’ => t(’header’),
‘footer’ => t(’footer’)

);
}

172

Chapter 7: Becoming an Expert Drupal Themer

and paste it at the end of the ./litworkshop/sites/all/themes/litgarland/template.php file, then modify
it as follows (note change to function name):

function litgarland_regions() {
return array(

‘left’ => t(’left sidebar’),
‘right’ => t(’right sidebar’),
‘content’ => t(’content’),
‘content_top’ => t(’content top’),
‘header’ => t(’header’),
‘footer’ => t(’footer’)

);
}

This means that the region ‘‘content top’’ will now be made available to the page template as the variable
$content_top. So now, when you go to Administer � Site building � Blocks, you are able to directly
assign the Random Quotation block to the newly created content top region for the litgarland theme!

Do so, and hit ‘‘Save blocks.’’ Of course, the immediate result is for the block to disappear completely
because nowhere is it specified where the region should be positioned. You saw earlier in the Annotated
page.tpl.php file how the HTML generated for the $header, $footer, $content, and other regions are
positioned. So you now need to do the same for $content_top!

Around line 66 of ./litworkshop/sites/all/themes/litgarland/page.tpl.php, simply specify this with a
single PHP statement, just below the printing of the breadcrumb and mission elements, as follows:

<?php if ($breadcrumb): print $breadcrumb; endif; ?>
<?php if ($mission): print ‘<div id="mission">’. $mission .\

’</div>’; endif; ?>
<?php print $content_top ?>

The block will now appear just before the title of the current node, so if you log off, and visualize
/texts/james/sonnet-two, every time you refresh the browser, you will get a random quotation just
above the content item. You should be seeing something similar to Figure 7-8.

Specifying Style
The layout specification is completed in the layout section of the style.css style sheet, which separates out
styling important for this aspect of presentation, as opposed to typography, the color scheme, and similar
styling specifications.

In practically all themes, these will generally be found in a separate style sheet called style.css. A notable
exception is the Zen theme, as you will see shortly, which names this style sheet with the name of the
theme or subtheme. (This is explained in an explanatory style.css stub.) The Zen theme also sports a
separate layout.css file, so that people with different skill sets can edit different files and thus lessen the
possibility of a web designer breaking the layout.

In terms of styling, before you get to styling the quotation, see if you can fix the footer a little; if you look
at it (see Figure 7-9), the image is really too close to the words and needs a little padding out. You can
give it a color background, too.

173

Chapter 7: Becoming an Expert Drupal Themer

Figure 7-8

A very useful, indeed, invaluable tool for quickly analyzing how to do this is the Firebug add-on for
the Firefox browser (install at https://addons.mozilla.org/en-US/firefox/addon/1843). Figure 7-9
shows an inspection of the Drupal icon image in the footer, giving a fair number of clues on how you
should modify the style sheet to pad out the image.

You can see that the link is enclosed in #footer id, so to pad out the icon a little so that it isn’t so close to
the words surrounding it, add in the following CSS code at the end of the theme’s style.css file:

/* footer image formatting */
#footer a img {

padding: 0 5px;
}

Figure 7-10 shows the results of these efforts.

Now, the next step is to theme the Random Quotation block, but beforehand, in order to really leverage
Drupal, and to do it right, you need to select and reuse a solid theming platform. In the following section,
you do this by standing on the shoulders of giants.

Synching Your Work with the Repository and the Test Site
At this point, you have installed the Nodequeue module, created a region, and used it. If you haven’t
synched your work recently, now’s the time.

174

Chapter 7: Becoming an Expert Drupal Themer

Figure 7-9

Figure 7-10
175

Chapter 7: Becoming an Expert Drupal Themer

Go to ./sites in your workstation, and find out the status of the SVN working copy (notice the shorthand
‘‘svn st’’ used in place of ‘‘svn status’’):

victorkane@victorkane:∼/litworkshop/sites$ svn st
? CVS
? default/settings.php
? default/CVS
? all/CVS
? all/themes/litgarland
victorkane@victorkane:∼/litworkshop/sites$

If you had Drush install the Nodequeue module and commit this change to the repository, there is noth-
ing to do there. But you need to synch the database changes, and Drush does not install themes, so you
will have to add the new litgarland theme to the repository yourself. Do the following:

victorkane@victorkane:∼/litworkshop/sites$ cd ..
victorkane@victorkane:∼/litworkshop$ drush sql dump >\
sites/all/backup/db/litworkshop.sql
victorkane@victorkane:∼/litworkshop$ cd sites
victorkane@victorkane:∼/litworkshop/sites$ svn add \
all/themes/litgarland/
A all/themes/litgarland
A (bin) all/themes/litgarland/logo.png
A all/themes/litgarland/style.css
A all/themes/litgarland/comment.tpl.php
A all/themes/litgarland/images
A (bin) all/themes/litgarland/images/bg-navigation.png
A (bin) all/themes/litgarland/images/bg-content-left.png
A (bin) all/themes/litgarland/images/bg-navigation-item.png
A (bin) all/themes/litgarland/images/bg-content-right.png
A (bin) all/themes/litgarland/images/bg-content.png
A (bin) all/themes/litgarland/images/bg-navigation-item-hover.png
A (bin) all/themes/litgarland/images/bg-bar.png
A (bin) all/themes/litgarland/images/body.png
A (bin) all/themes/litgarland/images/bg-bar-white.png
A (bin) all/themes/litgarland/images/menu-expanded.gif
A (bin) all/themes/litgarland/images/bg-tab.png
A (bin) all/themes/litgarland/images/menu-leaf.gif
A (bin) all/themes/litgarland/images/menu-collapsed.gif
A (bin) all/themes/litgarland/images/gradient-inner.png
A all/themes/litgarland/node.tpl.php
A all/themes/litgarland/block.tpl.php
A all/themes/litgarland/template.php
A all/themes/litgarland/print.css
A all/themes/litgarland/fix-ie.css
A (bin) all/themes/litgarland/screenshot.png
A all/themes/litgarland/minnelli
A (bin) all/themes/litgarland/minnelli/logo.png
A all/themes/litgarland/minnelli/style.css
A (bin) all/themes/litgarland/minnelli/screenshot.png
A all/themes/litgarland/minnelli/color
A (bin) all/themes/litgarland/minnelli/color/base.png
A all/themes/litgarland/minnelli/color/color.inc

176

Chapter 7: Becoming an Expert Drupal Themer

A (bin) all/themes/litgarland/minnelli/color/preview.png
A all/themes/litgarland/color
A (bin) all/themes/litgarland/color/base.png
A all/themes/litgarland/color/preview.css
A all/themes/litgarland/color/color.inc
A (bin) all/themes/litgarland/color/preview.png
A all/themes/litgarland/page.tpl.php
victorkane@victorkane:∼/litworkshop/sites$ svn commit -m \
"Added litgarland theme,enabled nodequeue and added a content \
top region to house a random quotation block based on the \
nodequeue module"
Sending all/backup/db/litworkshop.sql
Adding all/themes/litgarland
Adding all/themes/litgarland/block.tpl.php
Adding all/themes/litgarland/color
Adding (bin) all/themes/litgarland/color/base.png
Adding all/themes/litgarland/color/color.inc
Adding all/themes/litgarland/color/preview.css
Adding (bin) all/themes/litgarland/color/preview.png
Adding all/themes/litgarland/comment.tpl.php
Adding all/themes/litgarland/fix-ie.css
Adding all/themes/litgarland/images
Adding (bin) all/themes/litgarland/images/bg-bar-white.png
Adding (bin) all/themes/litgarland/images/bg-bar.png
Adding (bin) all/themes/litgarland/images/bg-content-left.png
Adding (bin) all/themes/litgarland/images/bg-content-right.png
Adding (bin) all/themes/litgarland/images/bg-content.png
Adding (bin) all/themes/litgarland/images/bg-navigation-item-hover.png
Adding (bin) all/themes/litgarland/images/bg-navigation-item.png
Adding (bin) all/themes/litgarland/images/bg-navigation.png
Adding (bin) all/themes/litgarland/images/bg-tab.png
Adding (bin) all/themes/litgarland/images/body.png
Adding (bin) all/themes/litgarland/images/gradient-inner.png
Adding (bin) all/themes/litgarland/images/menu-collapsed.gif
Adding (bin) all/themes/litgarland/images/menu-expanded.gif
Adding (bin) all/themes/litgarland/images/menu-leaf.gif
Adding (bin) all/themes/litgarland/logo.png
Adding all/themes/litgarland/minnelli
Adding all/themes/litgarland/minnelli/color
Adding (bin) all/themes/litgarland/minnelli/color/base.png
Adding all/themes/litgarland/minnelli/color/color.inc
Adding (bin) all/themes/litgarland/minnelli/color/preview.png
Adding (bin) all/themes/litgarland/minnelli/logo.png
Adding (bin) all/themes/litgarland/minnelli/screenshot.png
Adding all/themes/litgarland/minnelli/style.css
Adding all/themes/litgarland/node.tpl.php
Adding all/themes/litgarland/page.tpl.php
Adding all/themes/litgarland/print.css
Adding (bin) all/themes/litgarland/screenshot.png
Adding all/themes/litgarland/style.css
Adding all/themes/litgarland/template.php
Transmitting file data
Committed revision 29.
victorkane@victorkane:∼/litworkshop/sites$

177

Chapter 7: Becoming an Expert Drupal Themer

Now go to the test site, and deploy all your changes by updating the working copy and synching the
database, as explained in the last few chapters. Test that your changes are successfully deployed to
the test site.

Weak and Strong Points in Separation of Concerns with
Drupal

It is worthwhile noting that while Drupal excels in establishing a clean separation between the
presentation, data, and application logic layers, it does have one weak spot where separation of concerns
is concerned. Drupal fails miserably at separating business objects and application configuration. This
leads to a great deal of difficulty in maintaining production and test sites at times when you are close
to launch and while debugging is going on, and even scheduled modifications on development and
test sites, when people are adding and modifying content on the production site. Several solutions have
been proposed (and promised!) for this problem; one of the best seems to be the article ‘‘Development
Environment for Drupal’’ (http://ceardach.com/blog/2008/06/development-environment-drupal),
by Kathleen Ceardach, and her database scripts, packaged into a fully fledged Drupal module
(http://drupal.org/project/dbscripts).

But in theming, Drupal is at the height of elegance. Compared to other CMS frameworks, you have
no non-semantic HTML in the data marshaling layer, no layout hard-coded into the node (page con-
tent) building phase or into the application logic. In addition, you have layout added in a separate page
rendering process, which delegates regions, blocks, panels, and panes to their own rendering process
culminating in an XHTML and CSS invocation to finally render the look and feel of a page in a host of
feathered mini-layers.

Standing on the Shoulders of
Giants — Reusing the Zen Theme

You have the theme. From now on, the theme grows with your website application. It has been conceived
and designed with change in mind and will change constantly during its entire life cycle.

As you add more functionality in the implementation of each of the user stories, you will be adding more
theming, so the presentation layer, now installed in the project, can properly contain the content.

This is going to get complicated in a hurry. And there are so many stumbling blocks along the
way — anticipating all of the HTML entities and Drupal structural elements, cross-browser com-
patibility, and a host of other things. Time for reuse! This book recommends using the Zen theme
(http://drupal.org/project/zen) as the foundation for all your themes until you don’t know any
better and can go off and fend for yourself in all things theming.

And, as you will soon see, when it comes time to upgrade to Drupal 6, to Drupal 7, and beyond, you will
have a helping hand, standing on the shoulders of the giants standing on the shoulders of giants!

Listen to the seminal podcast (where the creator of the Zen theme, Jeff Robbins of Lullabot, dialogs
with the maintainer and re-creator of the Zen theme, John Albin Wilkins), which can be found at

178

Chapter 7: Becoming an Expert Drupal Themer

www.lullabot.com/audiocast/podcast-55-john-albin-wilkins-and-zen-theme. Next, study the
Zen theme documentation (currently at http://drupal.org/node/193318). Then join me in the next
sections, as we port our budding theme to Zen, creating a Zen subtheme, and then use it to theme the
Random Quotation block.

If you are using Drupal 5.x at this time, go ahead and install the Theme Settings module
(http://drupal.org/project/themesettings), which is supported by the Zen theme and is part
of Drupal core in Drupal 6.x and beyond. You will also have to install the dependency Theme Settings
API module (http://drupal.org/project/themesettingsapi).

Creating Subthemes
To create the subtheme, which serves as an override of custom Zen functionality, following the instruc-
tions in the official documentation, you first download the Zen theme itself, suitable for the Drupal
release you are using. Next:

1. Copy the STARTERKIT folder to a zenlitworkshop folder. You now have a new subtheme at
./sites/all/themes/zen/zenlitworkshop, which needs just a little configuration to get you
started.

2. You can start with a liquid layout, so copy ./sites/all/themes/zen/layout-liquid.css to
./sites/all/themes/zen/zenlitworkshop/layout.css.

3. In order to override print media styles, copy ./sites/all/themes/zen/print.css to
./sites/all/themes/zen/zenlitworkshop/print.css.

4. Copy ./sites/all/themes/zen/zen.css to ./sites/all/themes/zen/zenlitworkshop
/zenlitworkshop.css.

5. As per the documentation, ‘‘Edit the template.php and theme-settings.php files in your
sub-theme’s folder; replace ALL occurrences of ‘STARTERKIT’ with the name of your
subtheme.’’

6. Go to Administer � Site building � Themes, and enable and make default the zlitworkshop
theme. Click on the ‘‘Save configuration’’ button.

Well, everything got really plain-looking all of a sudden! And a bit of a mess. Head over to Administer �
Site building � Blocks, and fix up the blocks as they were before. The new theme already has a content
top region, so make sure Random Quotation is positioned there and that genre_browser is assigned to
the new content bottom region, then hit ‘‘Save blocks.’’ And all the blocks should be organized as before.
If not, make any necessary adjustments.

While we are on the Blocks Administration page, you can see that there are a lot of other regions already
implemented by the Zen theme which the zenlitworkshop subtheme has inherited. You can see them
marked in yellow.

Now everything is ready for your designer and the installation of a custom-designed theme. Let’s make
things a bit more presentable, however, and take a look around and see where things are.

179

Chapter 7: Becoming an Expert Drupal Themer

I made the following changes to ./litworkshop/sites/all/themes/zen/zenlitworkshop/
zenlitworkshop.css, and things look a little less scary now:

body
{
background-color: #d3d3ff;

}
...
#content-inner
{
background-color: #fff;

}
/* This makes a big difference! */
#mission, #content-top, #content-area, #content-bottom, .feed-icons{
padding: 5px;

}
#mission /* The mission statement of the site (displayed on homepage) */
{
background-color: #e9e9ff;

}

You will probably come up with a great many more suggestions! Our new tabula rasa can be seen in
Figure 7-11.

Figure 7-11

Now is a good time to dump the database and commit your changes, after adding the new theme to the
SVN repository.

180

Chapter 7: Becoming an Expert Drupal Themer

Applying the Subtheme to the Quotation Block
There are a couple of things left to do with respect to the Quotation block. It should:

Not appear on the front page, where the mission statement goes.

Have the same background as mission statement.

Only show title and clickable author.

Fixing It So That the Quote Doesn’t Appear on the Front Page
In order for the quote not to appear on the front page, you need to do the following:

1. Add a conditional statement in its rendering in the file ./litworkshop/sites/all/themes
/zen/zenlitworkshop/page.tpl.php. The first thing you should notice about this file is that
it doesn’t exist. That’s because you only override templates on a need-to basis. And you
should override it in the typical Drupal way: cut and paste plus naming conventions. Copy
the main Zen theme file to the subtheme directory, and ./zen/zenlitworkshop/page.tpl.php
will be executed in lieu of ./zen/page.tpl.php.

2. Edit the subtheme template override in a text editor, and look for the following code block:

<?php if ($content_top): ?>
<div id="content-top">
<?php print $content_top; ?>

</div> <!-- /#content-top -->
<?php endif; ?>

3. Add in the following conditional so that the block is not shown on the front page:

<?php if ($content_top && !$is_front): ?>
<div id="content-top">
<?php print $content_top; ?>

</div> <!-- /#content-top -->
<?php endif; ?>

4. Test that by going to the front page and verifying that the Random Quotation block is no
longer shown there.

Creating a Background for the Quote Block
Now, let’s give the Quote block the same look and feel as the Mission Statement.

1. In the file ./sites/all/themes/zen/zenlitworkshop/zenlitworkshop.css, give the mission
and the content-top divs the same background color:

#mission /* The mission statement of the site (displayed on homepage) */
{
background-color: #e9e9ff;

}

181

Chapter 7: Becoming an Expert Drupal Themer

#content-top /* Wrapper for any blocks placed in the "content top"
region */
{
background-color: #e9e9ff;

}

2. All that’s left is to theme the look and feel of the quote content item itself. For this purpose,
make a template specified just for nodes of type Quote, by using another polymorphic nam-
ing convention inherent in ‘‘The Drupal Way.’’

3. It turns out that all nodes are rendered in the content area according to the gen-
eral node.tpl.php template. If you wish to override this for any particular content
type, you specify a template for this by naming it accordingly: in this case, copy
./sites/all/themes/zen/node.tpl.php to ./sites/all/themes/zen/zenlitworkshop/node-
quote.tpl.php, and, thanks to the naming convention, the changes you make to this template
will only affect nodes of type Quote.

4. Basically, an eraser is going to be the best writer here: the first cut should look something
like this (achieved by simply erasing lines, since you only want the title and the taxonomy):

<div class="node <?php print $node_classes ?>" id="node-<?php print \
$node->nid; ?>"><div class="node-inner">

<?php if ($page == 0): ?>
<h2 class="title">

<a href="<?php print $node_url; ?>"><?php print $title; ?>
</h2>

<?php endif; ?>

<?php if (count($taxonomy)): ?>
<div class="taxonomy"><?php print t(’ in ‘) . $terms; ?></div>

<?php endif; ?>

</div></div> <!-- /node-inner, /node -->

5. Cool! It’s starting to look much cleaner already! Now let’s get rid of ‘‘in’’ and put in a typical
quotation dash for the author, stop letting the quote be a link, and reduce its size also. End
result:

<div class="node <?php print $node_classes ?>" id="node-<?php print\
$node->nid; ?>"><div class="node-inner">

<?php if ($page == 0): ?>
<p class="quote">

<?php print $title; ?>
</p>

<?php endif; ?>

<?php if (count($taxonomy)): ?>
<div class="taxonomy"><?php print t(’ - ‘) . $terms; ?></div>

<?php endif; ?>

</div></div> <!-- /node-inner, /node -->

182

Chapter 7: Becoming an Expert Drupal Themer

6. Now you may need to right-justify the author. Of course, you do this with CSS by adding
the following to the end of the file ./litworkshop/sites/all/themes/zen/zenlitworkshop/
zenlitworkshop.css:

/* Random Quote block */
#content-top .taxonomy {

margin-left: 400px;
}

The results of your labors should look similar to Figure 7-12. A much cleaner quotation block! Add the
newly created files to your SVN working copy, and commit your changes.

Figure 7-12

Summary
Well, you are not going to become an expert Drupal themer just from reading this chapter. What has been
covered, on the other hand, is everything you need in order to start out practicing to become one. You
have seen the philosophy and character of the Drupal theming system itself, based on a clean separation
of content and presentation. You have seen how Drupal goes about rendering a page of dynamic content,
and you have seen how the presentation can be overridden — in structure, layout, and styling — by
managing the various elements making up the Drupal theme. And finally, you have seen how to go about
creating a subtheme of the Zen theming component, in order to create a rock-solid theming platform for
your projects. The presentation layer is now installed and will be considered in all future chapters of the
book as the project matures.

183

Part III

Upgrading Your Drupal Site

Chapter 8: Upgrading to Drupal 6

Chapter 9: Upgrading to Drupal 6 Revisited

Upgrading to Drupal 6

Upgrading from one Drupal release to another is what you call a nontrivial task. As such, you really
need to follow in the footsteps of those who are more experienced and can show you the pitfalls
and possible problems you may encounter. For this reason, before even describing the basic steps,
a recommended reading list is presented at the beginning, rather than at the end of this chapter.

Then the basic steps are outlined, and then you are taken by the hand and led through the
complete detailed procedure you can later put to use yourself, using a real-world example, my
blog, http://awebfactory.com.ar. It has been running for about three years now on Drupal,
since October 2005. It started out on Drupal 4.4 or so. On the blog, there is an article on how I
upgraded from Drupal 4.7 to Drupal 5.x (‘‘Updating awebfactory.com.ar from 4.7 to Drupal 5’’;
http://awebfactory.com.ar/node/223).

There is even a before-and-after thumbnail, because I changed over to a custom theme. This time,
however, I will be more than satisfied if I can get the same theme working as is under Drupal 6.x

So, here we go.

Recommended Reading
The more you know, the better! Before upgrading, study the following references:

Drupal Handbook upgrade pages: http://drupal.org/upgrade

The UPGRADE.txt file found in the document root of the Drupal 6.x file tree is by all
accounts the best (if not only) reference material; as well as the documentation that
comes with each Drupal module.

Greg Knaddison (greggles) has published an excellent video on the basic process of
upgrading from Drupal 5.x to Drupal 6.x, part of the Mastering Drupal series. The video
is available free online at www.masteringdrupal.com/screencast/upgrading-to-drupal-6.

Special Forum on drupal.org dedicated to upgrade problems and advice

Converting 5.x themes to 6.x: http://drupal.org/node/132442. A little technical, but
might come in handy. See http://drupal.org/update, http://drupal.org/update
/theme, and http://drupal.org/update/modules.

Chapter 8: Upgrading to Drupal 6

Upgrading — The Basic Process
Here are the steps to follow to upgrade from Drupal 5.x to Drupal 6. These are discussed in full detail in
the sections that follow.

Before you even start, it is important that you both back up and copy your
production website to a test site, where you can roll up your sleeves and work
happily in full knowledge of the fact that it is impossible for you to do any serious
damage. When the upgrade is complete, or at least tested, it can be copied, or the
same steps followed again, on the production site.

1. Shift everything over to a test site. (You may already have one, but this is just to make sure
you’re acting on the real McCoy, just in case you are not using version control.)

2. Update everything to the latest Drupal 5.x version available, not only for Drupal core, but
also for all the modules you are using.

3. Test everything running in the latest and brightest 5.x version.

4. Make a module inventory, and see which modules might not yet have been upgraded to a
Drupal 6.x version. The modules you have installed are the most important factor in deter-
mining how easy or difficult, or even possible, the upgrade process will be.

5. Switch to the default Drupal theme. Research whether or not your theme is available in a
version for Drupal 6 by visiting the theme’s project page (e.g., http://drupal.org/project
/amadou) and seeing if there is a recommended Drupal 6 version, or by locating your theme
from the list at http://drupal.org/project/Themes.

6. Disable all modules. Now, do not uninstall any of the modules — you don’t want to disturb
your data. You just want to leave the field clear for the Drupal 6.x core database upgrade to
take place first.

7. Update the Drupal core.

8. Update each of the modules and the theme.

9. (Pinch yourself: It’s alive!) Re-running All Site Acceptance Tests.

10. Deploying.

Now for true confessions: exactly what happened to http://awebfactory.com.ar as I went through
each of these steps? Here is the 10-point program:

Step 1: Shifting Everything over to a Test
Site

To start, you want to make a test site. I made a test site on my Ubuntu-fueled laptop by first creating
a virtual host pointing to a work directory, added a line to /etc/hosts to create a pseudo-subdomain
locally, and then restarting the Apache HTTP server (as described in an earlier chapter).

188

Chapter 8: Upgrading to Drupal 6

Next, I needed to transfer the production site to the new local test site. If you have been following this
book, then you already know how. In any case, I will quickly review three ways of doing this (outlined
in the following sections).

Installing Using a Complete Backup from Your Hosting
If you have CPanel or the like, there is an icon or a link pointing you to the page where you can create a
full backup of your site, with instructions on how to download it. Once you have it on your local disk,
you will see that it is a tarred or zipped copy of everything you possess on the site, including all your
settings, counters, quotas, logs, databases, certificates, and what have you. The idea is that this file can be
uploaded to a new hosting site to make a clone of your previous one.

However, you are interested in just two directories, which you will see after opening up the compressed
archive file: your home directory and the dumps of the contents of your database. On my CPanel backup,
my home directory was in homedir and the document root was below that (public_html). So I could copy
out the Drupal files directly to my test filesystem.

The database dump was in the MySql directory. The file was named username_drpl1.sql, in accordance
with the host server username.

The last task before starting up the local test mirror is to insert the SQL file into the database, using the
database administration tool included with Cpanel, PhpMyAdmin.

If there is no way to get a compressed archive of your host filesystem to download conveniently as a sin-
gle file (albeit many megabytes), the next best thing might be to simply FTP the files to your test system.
You will have to use PhpMyAdmin or similar to access a copy of your database, in order to guarantee that
the site you are upgrading to Drupal 6.x contains all the latest changes.

Then use PhpMyAdmin or similar on your test site to create the test database and insert the downloaded
database dump from the production site, and you should be all set to go.

Quick and Dirty on the Command Line
Here’s what I did: I logged into hosted server via ssh and used the command line to first dump the MySql
database to a convenient place (usually ./site/all/backup/db) and then tar up and compress the whole
file structure. Follow these steps:

1. The information you need is the name of the database together with the database user and
password:

username@awebfactory.com.ar [∼]# cd public_html/sites/all/backup/db
username@awebfactory.com.ar [∼/public_html/sites/all/backup/db]# grep \
mysql ../../../default/settings.php
$db_url = ‘mysql://username:password@localhost/databasename’;
username@awebfactory.com.ar [∼/public_html/sites/all/backup/db]#
mysqldump -u\
username -p databasename > awebfact.sql

189

Chapter 8: Upgrading to Drupal 6

Enter password:
username@awebfactory.com.ar [∼/public_html/sites/all/backup/db]# ls
./ ../ awebfact.sql
username@awebfactory.com.ar [∼/public_html/sites/all/backup/db]#

As an alternative with very large databases, gzip the result directly, like this:

username@awebfactory.com.ar [∼/public_html/sites/all/backup/db]#
mysqldump -u \
username -p databasename | gzip > awebfact.gz

2. Tar the whole Drupal installation, including this database dump:

awebfact@awebfactory.com.ar [∼/public_html/sites/all/backup/db]#
cd ../../../..
awebfact@awebfactory.com.ar [∼/public_html]# tar cvzf ../awebfactory.tgz .

3. You now download the tarball (awebfactory.tgz) and untar it in your test site document
root:

victorkane@victorkane:∼/Work/AWebFactory/awebfactory.com.ar/public_html$
tar xvzf
../awebfactory.tgz

4. Now create the local database, create the user with a password with access to only that
database, insert the database dump into the newly created test database, and fire up the
local mirror! Here are the final steps (you can find them in the file INSTALL.mysql.txt, in
the Drupal document root):

victorkane@victorkane:∼/Work/AWebFactory/awebfactory.com.ar/public_html
$ mysqladmin\
-u adminuser -p create databasename

Enter password:
victorkane@victorkane:∼/Work/AWebFactory/awebfactory.com.ar/public_html
$ mysql -u\
adminuser -p

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 508
Server version: 5.0.51a-3ubuntu5.1 (Ubuntu)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX,
ALTER, CREATE

-> TEMPORARY TABLES, LOCK TABLES
-> ON databasename.*
-> TO ‘username’@’localhost’ IDENTIFIED BY ‘password’;

Query OK, 0 rows affected (0.03 sec)

mysql> quit

190

Chapter 8: Upgrading to Drupal 6

Bye
victorkane@victorkane:∼/Work/AWebFactory/awebfactory.com.ar/public_html\
$ mysql -u username -p databasename < sites/all/backup/db/awebfact.sql
Enter password:
victorkane@victorkane:∼/Work/AWebFactory/awebfactory.com.ar/public_html$

All set, you have the mirror running now on the test site!

Common Caveats
Cat got your .htaccess file? Layout, CSS weird? Clean URLs no longer working, result-
ing in ‘‘404 Not Found’’ errors? You used a method to copy the files that omitted
Linux ‘‘hidden files’’ (the ones starting with a dot: like .htaccess). Solution: copy in the
.htaccess file from a fresh Drupal install.
What’s that? .htaccess file is there, but things just not right, maybe your browser is
offering to download php pages instead of serving them? The problem might be that
the .htaccess file is specifically adjusted to your production site environment. Copy it
to the test site using the same method you used to copy the other Drupal files.

Step 2: Updating to the Latest Drupal 5.x
Version Available

Our main objective is to update to Drupal 6.x. Now, the scripts that are run by the release upgrade
procedure have been written, debugged, and enhanced on the basis of the latest Drupal 5.x version
available at that point. As a result, if you attempt an upgrade from an earlier version of Drupal 5.x,
you will not be playing with a full deck, and you are sure to run into problems because the upgrade
scripts will not find things as they expect.

Updating to 5.x Steps
Follow these basic steps to get all your modules updated correctly:

1. First, make sure that the site is running as you expect it to on the test site. Then, save a copy
of .htaccess, robots.txt and, of course, sites/default/settings.php and any other file you have
modified outside of the files and sites/all directories. Finally, get ruthless and erase the
Drupal core completely, leaving only the sites and files directories.

2. Now use any one of the methods you have seen in earlier chapters and install the latest
Drupal core. Ten bonus points if you do it using CVS (don’t forget .cvsignore).

Another way is to untar a freshly downloaded Drupal 5.x tarball (right from the download
link on http://drupal.org) into a directory, erase the sites subdirectory, and then copy
the whole file tree into the Drupal Document root directory. Finally, merge your custom
specifications into the new sites/default/settings.php file, .htaccess file (if you have made
any custom modifications), robots.txt, and so on, using as reference the copies you saved in
Step 1. You don’t want to simply keep the old versions since they may have been improved
or may have undergone security fixes.

191

Chapter 8: Upgrading to Drupal 6

Question: How Do I Switch to Using CVS on an Existing Drupal Installation?:
Answer: First plain old erase everything except for the ./sites and ./files directory,
unless you are using a custom .htaccess and/or robots.txt file for some reason. Then
using a text editor, create a .cvsignore file in the document root, telling CVS to ignore
./sites/default/settings.php and any other special file you don’t want overwritten
when updating CVS. Note that starting with Drupal 6.x, the core will cease to over-
write your settings.php file, but with Drupal 5.x you need this. Secondly, check out the
core. If your Drupal install is in, say, ./public_html, then check out to that specific direc-
tory from the directory just above it. For example, to check out Drupal 5.9 to directory
public_html, type:

cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs
/drupal co -d
public_html -r DRUPAL-5-9 drupal

3. Then, update.php must be run (the first of many times) in case there are database tasks to
be performed as part of the update. This has to be done whenever the core or any mod-
ule is updated. In this case, run it once for the Drupal core update. Later on, it will be run
for the modules update. To run it, access it, as admin User #1 (hopefully), via the browser:
http://awebfactory.com.ar/update.php.

4. update.php may complain about your not being User #1 (you know, that first user you cre-
ated with super privileges but never used again, and whose password you have hopelessly
forgotten). Never fear, following the instructions in the PHP doc comment: using a text
editor, change the following:

$access_check = TRUE;

to

$access_check = FALSE;

update.php will even warn you about changing it back after you’re done (see Figure 8-1).
Ah, the Drupal way! After running the update script, you will be told of any modifications
made to the database. Figure 8-1 shows the screen following an update from Drupal 5.x to
Drupal 5.9.

For doing the upgrade from 5.x to 6.x, you actually should be User #1, anyway. So if you
don’t have the password documented, go ahead and change the password for that user,
and document that. If you are stuck without an alternative user with full permissions,
get out from behind the eight ball by changing User #1 manually. For example, log in
to PhpMyAdmin, and select the appropriate Drupal database. Select the users database.
Browse. Disregard record 0. Edit the record with UID equal to 1. Supply a brand-new
password by editing the field pass using the function MD5. Good old PhpMyAdmin will
tell you that this is equivalent to the SQL statement:

"UPDATE `databasename`.`users` SET `pass` = MD5(‘newpassword’) WHERE \
`users`.`uid` =1 LIMIT 1 ;"

Switch to that User #1 for the remainder of the upgrade process.

192

Chapter 8: Upgrading to Drupal 6

Figure 8-1

5. Once the Drupal core has been updated, each of the modules must be updated. There is
an excellent module, called, appropriately enough, the Update Status module, that actually
shows you the status of your modules and which ones need updating. One of the benefits of
upgrading to Drupal 6 is that this module becomes part of the Drupal core. I had installed it
in my blog when it first came out.

6. Before you do anything else, go to Administer � Logs � Status report.

You can see immediately see that you have two problems, as shown in Figure 8-2. (In Drupal, these are
red. In the figure, they’re the gray highlighted areas in the center panel with marks next to them.)

One problem is that the ‘‘File system’’ is ‘‘Not writable.’’ And yet you know it exists. What gives? As the
message indicates, you have to ‘‘change the current directory’s permissions so that it is writable.’’ One
way is to give full permissions in that directory (somewhat insecure), and another, better way is to make
the Apache HTTP server user and group the owners of that directory. On many systems, that owner is
nobody; on Debian and Ubuntu, it is www-data. You can do that with your favorite file manager, or from
the command line, after changing directories to the Drupal document root, type:

$ sudo chown -R www-data:www-data files
[sudo] password for victorkane:
$

193

Chapter 8: Upgrading to Drupal 6

Figure 8-2

After doing so, the red File System warning will change to a nice, green ‘‘File systemWritable (public
download method)’’ message.

Now, click the Available Updates link in the Module update status red warning block. You are taken to
Administer � Logs � Available updates. Just to be sure, click on the ‘‘Check manually’’ link. Drupal will
compare the versions of your installed modules with those in the Drupal CVS code repository.

The Sad State of My Modules
In Figure 8-3, you are shown the resulting status. As you can see, my modules status is in a sad state, just
as I’ll warrant yours might be — something that must be remedied before contemplating the upgrade to
Drupal 6.

Studying Figure 8-3, you can see there are really a lot of modules to update. The first thing you should
try is the ‘‘I’m feeling lucky’’ approach, which, after carefully dumping the database into a SQL file to
capture the current state of the system, is to download and install all the modules that need updating,
run update.php so that the database can be brought in sync with the new versions of the modules, and
then test.

194

Chapter 8: Upgrading to Drupal 6

Figure 8-3

In most cases, you should be fine. If you encounter problems with a given module, go back by restor-
ing the database to its previous state and then perhaps installing all except that problem module, then
after saving the state, try again with the problem module and carry out the appropriate troubleshooting
(including a very important visit to the issue queue of the offending module, where a solution is almost
sure to be found). In most cases, however, you won’t have any problems. By the way, this is why you
should update your modules frequently! Now, with the Update Status module, what used to be a chore
is made quite simple.

Doing What I Did
Given Figure 8-3, I downloaded (using the handy Download link) and installed the latest 5.x-compatible
versions of the following modules, using the recommended versions in each case:

Archive

CAPTCHA

CCK

Date

GeSHi Filter for syntax highlighting (which I use for code listings)

195

Chapter 8: Upgrading to Drupal 6

Google Custom Search Engine

Image

Image Assist

Project

Project issue tracking

S5 presentation player

Service links

Tagadelic

TinyMCE WYSIWYG Editor (for rich text editing: to update, download the latest version
of the module and then the latest version of TinyMCE itself — as recommended by module
instructions — from the Moxiecode Systems site, http://tinymce.moxiecode.com/). This is
not covered by the GPL license, and third-party code is not kept in the Drupal CVS repository,
which . . .is for Drupal code. I usually install this on one site and then keep a compressed tarball
on hand for easy copying to other sites.

You can even use a command-line trick to streamline the downloading process, using wget:

1. Right-click on the Download link for each module on the Update status page marked in red
that you are going to update, and copy the link location.

2. On the command line, type wget, and then paste in the link and hit [Enter].

3. You can download all the compressed module tarballs very quickly. Place them all in a
suitable directory, and erase the modules you are going to update from ./sites/all/modules
completely (but conserve any needed fonts and/or third-party files like TinyMCE or
JavaScript libraries unless you are going to download a newer version).

4. Copy in all the fresh files (after all, you do have a backup from the production site).

What needs to be stressed here is that in a bulk update like this, you should restrict yourself
to the latest stable versions of the modules you are actually using. If you want to try out
the spanking-new version 2 of a module packed with new shiny features, do it when you
know the system has been completely updated and works with all the stable versions first.

When I invoked the ‘‘run the database upgrade script’’ link, I immediately got an error message:

user warning: Table ‘awebfact_drpl1.captcha_points’ doesn’t exist query:
SELECT module,
type FROM captcha_points WHERE form_id = ‘update_script_selection_form’ in

/home/victorkane/Work/AWebFactory/awebfactory.com.ar/public_html/includes/ i
database.mysql.inc on line 172

I bravely clicked on the Update button, expecting the captcha update script to take care of that prob-
lem. (Were it not to do so, perhaps I needed to upgrade to an older version first, and then to the newer
version.)

I then got a host of additional warnings in red to the same effect, and some others too, followed by a
listing of all the database changes carried out. I saved the page for future reference and then bravely
clicked on the ‘‘Main page’’ link.

196

Chapter 8: Upgrading to Drupal 6

Things were OK, because the database update scripts had cleared away the problems. But then I started
getting an insistent warning in red on pages that had source code, saying, many times:

GeSHi library error: sites/all/modules/geshifilter/geshi is not a directory.
GeSHi library error: sites/all/modules/geshifilter/geshi is not a directory.

A review of the README file made me remember that, just like TinyMCE and CAPTCHA (needed extra
Open Source font files), additional third-party files required by the module and not kept in the Drupal
CVS repository were required and sorely missed. A careful reading of the README.txt file in this module
explained the dependency:

DEPENDENCY

This module requires the third-party library: GeShi (Generic Syntax
Highlighter, written by Nigel McNie) which can be found at

http://qbnz.com/highlighter
See installation procedure below for more information.

Instead of copying back in what I had before (always an option), I headed to that site to get the latest
version, and:

Download the GeSHi library (version 1.0.x) from http://qbnz.com/highlighter
and place the entire extracted ‘geshi’ folder (which contains geshi.php)
in the geshifilter directory (e.g. as /sites/all/modules/geshifilter/geshi)

Then I headed to the Administer page and got a WSOD (white screen of death) with the following
warning:

Fatal error: require_once() [function.require]: Failed opening required
’sites/all/modules/geshifilter/geshi/geshi.php’
(include_path=’.:/usr/share/php:/usr/share/pear’) in
/home/victorkane/Work/AWebFactory/awebfactory.com.ar/public_html/
sites/all/modules/geshifilter/geshifilter.inc on line 33

And yet, the file was there, gosh darnit! Ah, the permissions were weird in the file I had unpacked
into the directory, and the Apache HTTP server couldn’t see it. I normalized the permissions to the same
as the other PHP files. You can do this with your favorite file manager. I did it from the command line,
of course, like this, recursively setting all the php files from the ./geshi directory on down:

$ sudo chmod -R 644 *.php

The red errors went away. But the geshi filtering stopped working. Instead of beautifully syntax-colored
code, I got:

[geshifilter-code] <?php // on the fly id and description for view $view =
views_create_view(’dealers_in_luck’, ‘Dealers still in luck’); // title, table
view, pager on and 5 nodes-a-page... check out views.module for other params!
views_view_add_page($view, t(’Crisis? What crisis...?’), NULL, ‘table’, true,
5, ‘’, 1, false); // we specify fields, necessary because this is a table view;
first the node title views_view_add_field($view, ‘node’, ‘title’, false, 0,
’views_handler_field_nodelink’); // show us the monthly sales volume too
(view, db table, db field, ... and handler views_view_add_field($view,

197

Chapter 8: Upgrading to Drupal 6

’node_data_field_dealer_monthly_sales_volu’, ‘field_dealer_monthly_sales_
volu_value’,
false, 0, ‘content_views_field_handler_group’); // filters now; first, just show

car dealers views_view_add_filter($view, ‘node’, ‘type’, ‘=’, ‘dealer’, ‘’); //
just published ones at that views_view_add_filter($view, ‘node’, ‘status’, ‘=’,
1, ‘’); // show me all of the ones with more than 500 sales volume per month
views_view_add_filter($view, ‘node_data_field_dealer_monthly_sales_volu’,
’field_dealer_monthly_sales_volu_value_default’, ‘>=’, ‘500’, ‘’);
views_load_cache(); views_sanitize_view($view); print views_build_
view(’embed’, $view, array(), false); ?> [/geshifilter-code]

The filters weren’t working!

I headed to the Administer page and was confronted by another red warning:

One or more problems were detected with your Drupal installation. Check the status
report for more information.

I went to the status report and was told ‘‘Database schema Out of date.’’ Aha! The system needed
update.php to be run a second time! This could be either very good or very bad. I ran update.php again.

This time, no error messages. Upon clicking the link to run the database upgrade script, there were no
more red error messages, but upon completion, I got:

The following queries were executed
project_issue module
Update #5200

* Failed: The update was aborted for the following reasons:
o The Comment upload module is not enabled.

This and all subsequent updates of Project issue were safely aborted. Correct
the problems listed above, then re-run update.php, click ‘Select versions’, select
update 5200 for project_issue, and click ‘Update’.

Note: you will most likely need to disable the Project issue module
temporarily in order to resolve the issues above. If necessary, please refer to
Project issue’s UPGRADE.txt for further details regarding this upgrade problem.

I went to Administer � Site building �Modules and saw that, true enough, the Comment upload mod-
ule was missing. I downloaded this module from http://drupal.org/project/comment_upload and
installed it. Upon refreshing the page, its checkbox was grayed out, but I clicked on the ‘‘Save configura-
tion’’ button anyway.

As a Drupal aside, the Geshi syntax was working now, probably because clicking on the ‘‘Save config-
uration’’ button on Administer � Site building � Modules refreshes the cache of variables in memory,
and that seems to have done the trick.

So, now to execute update.php again! And indeed, the project_issue module happily reported on no
fewer than eight database modifications it had carried out.

I clicked on the ‘‘Administration page’’ link. Behold! A site with no red error messages! I went to Admin-
ister � Logs � Available updates. Green, all green.

198

Chapter 8: Upgrading to Drupal 6

Ah, so many modules! So little time!

How to Find Error Messages When You Get the White Screen of
Death (WSOD)

The WSOD occurs when there is an error preventing any output to the screen. As a
result, you don’t get the benefit of seeing what is going on, and you are therefore ren-
dered clueless as to how to solve the problem. So whether or not you are a programmer,
you do need to know two things: first, how to turn PHP error messaging on; and sec-
ond, where to find the error messages.

You can ask your Hosting provider to turn error messaging on, but on many hosting
sites, you can have your own php.ini file in the document root directory. If it is there,
make sure it includes the following line, at least while the site is under development
(the php.ini file explains the meaning of many error levels and includes examples of
how to include and/or exclude single or multiple entries):

error_reporting = E_ALL

Then look at your Apache HTTP server’s error logs, to see what is going on when the
WSOD occurs. The exact location of these logs varies with different operating systems
and distributions, but you will find it at locations like /var/log/apache2/error.log or
/var/logs/httpd/error_log.

Tip: To watch your log entry being made in real time, open up an ssh session, go to the
log directory, enter the following command, and watch this window as you enter the
WSOD (or refresh the screen):

tail -f error.log

The error log will tell you if you have run out of memory, or whether a required PHP
file is missing, and so on.

Step 3: Testing Everything in the Upgraded
5.x Version

At this point, you need to test the site, making a blog entry and uploading images as usual. The first
time I used image assist to position an image within a TinyMCE editor text area, I saw a lot of messages
saying that the images had been regenerated. But thereafter, everything worked as before. Got my site
back again. Project and project issues were working (had used that starting a couple years ago to track
web application projects on the site in collaboration with others).

If your site seems to be working well, just pay a couple of visits to make sure everything is problem-free:

1. Go to Administer � Logs � Recent log entries, where there should be no error messages
from the recently updated modules. Don’t worry if there are. If error message persist, visit
the module’s issue queue, which is listed on the module’s home page (which you can reach
directly from Administer � Logs � Available updates, assuming that you have the Update

199

Chapter 8: Upgrading to Drupal 6

Status module installed, via the View all pending issues link). You should not attempt the
upgrade if there are error messages.

2. Pay a last visit to Administer � Logs � Available updates, just to make sure that everything
is absolutely up-to-date just prior to actually going ahead with the upgrade.

At this point, you should immediately back up the database and the complete filesystem so that if diffi-
culties are encountered while upgrading to Drupal 6.x, you will at least have this shiny new upgraded
5.x site to fall back on.

Step 4: Making a Module Inventory
You have now come to the moment of Drupal module truth. In an ideal world, when you are
upgrading from Drupal 5.x to 6.x, you need to replace each installed module with its Drupal 6.x
release counterpart. However, it might happen that there is no stable or production-ready version
available for a given module. (The Drupal module repository listings for a given category, e.g.,
http://drupal.org/project/Modules/category/90, will show you which modules are stable with the
sign ‘‘Recommended for version 6.x’’ accompanied by a green checkmark.) If there is no stable release,
or at least a good release candidate, then you may need to forgo that functionality until such a time as a
release is issued. But you need to know this ahead of time because the lack of an available stable release
of a module might well enter into your decision on whether the time is even ripe for upgrading — which
is why this needs to be researched before actually going through with the upgrade.

A release upgrade is a good time to actually upgrade the architecture of the site itself and to decide if you
really need to go on with all the installed modules. Perhaps some of them have been ported to the core;
perhaps some of them have more attractive alternatives or can be implemented using simpler building
blocks of your own. For example, in my case, I decide to eliminate the project and project issue modules
in favor of the content types and views modules–based solution that was developed in an earlier chapter
for the development documentation for the On-Line Literary Workshop site.

It might be a good time to change the theme, also.

From http://awebfactory.com.ar, the following table is a list of all the installed modules and whether
or not they will be continued into the Drupal 6.x version of the site, replaced, or discontinued.

Modules Inventory

Module Name Recommended Drupal 6.x
Version?

Notes

adsense Development version only (at time
of writing)

archive Yes

captcha Yes

cck Yes Upgrades only possible from
Drupal 6.3 and later

comment_upload Not using (functionality to be
replaced)

200

Chapter 8: Upgrading to Drupal 6

Modules Inventory

Module Name Recommended Drupal 6.x
Version?

Notes

contact_forms Yes

date Yes

freelinking Yes

geshifilter Yes

google_cse Yes

image Yes

img_assist Yes

og Yes

project Not using (functionality to be
replaced)

project_issue Not using (functionality to be
replaced)

s5 Development version only in both
Drupal 5 and 6

Depends on third-party software

service_links Yes

tagadelic Yes

tinymce Yes Depends on third-party software

Step 5: Switching to the Default Drupal
Theme

At this point, you are ready to continue with the process by disabling the modules and the custom theme,
if any, prior to updating the Drupal core itself. The purpose here is part of the upgrade strategy of divid-
ing the complexity into three main parts:

Core

Modules

Themes

Once the core is working, the modules can be upgraded as much as possible, and on that clean deck,
with the system working, the problems originating with converting custom and semi-custom theming
solutions from 5.x to 6.x can be dealt with in an isolated manner.

Upgrading themes from one Drupal release to another is always going to require some effort, and this is
especially so when upgrading from Drupal 5.x to Drupal 6.x, because on top of the usual run of changes
in function names and parameters, there are significant changes that went into effect on the theme engine

201

Chapter 8: Upgrading to Drupal 6

front starting with Drupal 6.x — this sort of thing should. The Drupal Handbook documentation actually
has a great theming overview (see http://drupal.org/theme-guide), accurate from a Drupal 6.x and
up vantage point, which will undoubtedly help a great deal. See the section, ‘‘Step 8b: Upgrading the
Theme,’’ later in this chapter for some concrete examples.

Step 6: Disabling All Contributed Modules
The steps for this are straightforward: Go to Administer � Site building � Modules, and disable all
non-core modules. Because of dependencies between modules, you may need to disable an initial group,
hit the ‘‘Save configuration’’ button, then disable a second group of modules upon which there no longer
exist dependencies. In fact, it is very common for this procedure to be repeated several times.

However, do not uninstall any of the modules. Unless you plan on discontinuing the use of that module,
uninstalling it will destroy all content and data associated with that module. The goal here is not to
disturb your data, but to simply leave the field clear for the Drupal 6.x core database upgrade to take
place first.

The big exception to not uninstalling modules before performing the upgrade procedure is the Update
Status module, which, because it is now part of the Drupal core, specifically requires you not only to dis-
able it before upgrading the Drupal core, but also to uninstall it, thereby removing all traces of it from the
database so that it does not clash with the new codebase. To do this, go to Administer � Site building �
Modules and disable the module, then click on the ‘‘Save configuration’’ button. Then (and only then),
click on the Uninstall tab, select the ‘‘Update status’’ checkbox, and click on the Uninstall button.

Step 7: Updating the Drupal Core
There are just two prerequisites here:

Firstly, you really need to be logged in as User #1 (the first user ever created). If you are logged in as
an Admin user with full permissions, you can change the password of User #1 if you cannot recall it. (It
should be written in a safe place with other site documentation.)

Secondly, if this happens to be a production site, you should definitely go to Administer � Site config-
uration � Site maintenance, and go off-line by selecting the Off-line radio button and clicking on the
‘‘Save configuration’’ button. That way, users who happen upon the site during this whole process will
be warned that the site is undergoing maintenance while it is inaccessible.

Then carry out the following steps:

1. Make sure you have a backup of the Drupal 5.x state of the files and database as it was
before disabling the theme and modules, to fall back on in case of emergency and from
which to extract site-specific files and info, such as ./sites/default/settings.php, which holds
your database access and other important settings, perhaps a custom .htaccess or robots.txt
file, and the like. And, of course, the all-important graphic assets, usually found in the files
directory.

202

Chapter 8: Upgrading to Drupal 6

2. Install the standard Drupal 6.x distribution, either via CVS or by unpacking a downloaded
tarball (remembering always never to forget about the .htaccess file).

3. This is very important: make sure you deal with ./sites/default/settings.php properly. It
cannot be overemphasized that there are changes to the file in Drupal 6.x, so you want to
actually use the new default file default.settings.php as a basis. First of all, make doubly
sure that you have saved the old settings.php file somewhere else. Then delete it. Copy
the default.settings.php file to settings.php (copy, do not just move or rename). Edit set-
tings.php, inserting your site-specific information, especially the database URL containing
your settings (i.e., $db_url=‘mysql://username:password@localhost/databasename’;).

4. Delete all the old versions of installed modules (usually in ./sites/all/modules).

5. Install the new Drupal 6.x versions of those modules you will be continuing to use. You will
want to copy in the third-party dependencies (TinyMCE, S5, fonts for the graphical version
of the Captcha module, etc.) from the backup of the 5.x site, or else download fresh versions
from their third-party project pages.

6. Run http://example.com/update.php. (The current session still has User #1 logged in with
full permissions!)

I ran into an unforeseen problem immediately (probably because I was using the old settings.php file).
The session somehow was not honored, and I was told I didn’t have permissions to run update.php.
So I did the following: In Drupal 6.x, you can no longer hack update.php itself in the old sense; you
need to modify a new access permissions section in ./sites/default/settings.php. So I copied the original
settings.php to settings.php.old, and then added the database access details into a new settings.php file
copied from the new default.settings.php file now provided by Drupal 6.x. In the new settngs.php file I
specified:

$update_free_access = TRUE;

Then I could run http://example.com/update.php and had the advantage of going with the new version
of settings.php, a must.

I was greeted with an overview Drupal database update page, with a lot of good advice on it, which has
already been mentioned in these pages. So I hit ‘‘Continue.’’ On the next page, I was asked if I wished
to select the updates, which you don’t want to do unless you have a really good reason to stray from
the suggested defaults. I didn’t either, so I hit the ‘‘Update’’ button. Eighty-eight updates were to be
carried out.

After a while, I was greeted with a long success page, which was the same as Figure 8-4, but greatly
enlarged by several sections. First, it printed out many info lines in green:

Saving an old value of the welcome message body for users that are pending
administrator approval. However, you should consider modifying this text, since Drupal
can now be configured to automatically notify users and send them their login
information when their accounts are approved. See the User settings page for details.
Drupal can check periodically for important bug fixes and security releases using the
new update status module. This module can be turned on from the modules administration
page. For more information please read the Update status handbook page.

203

Chapter 8: Upgrading to Drupal 6

Drupal now has separate edit and delete permissions. Previously, users who were able
to edit content were automatically allowed to delete it. For added security, delete
permissions for individual core content types have been removed from all roles on your
site (only roles with the "administer nodes" permission can now delete these
types of content). If you would like to reenable any individual delete permissions,
you can do this at the permissions page.
Blog API module does not depend on blog module’s permissions anymore, but provides
its own ‘administer content with blog api’ permission instead. Until this
permission is assigned to at least one user role, only the site administrator will be
able to use Blog API features.
All date fields using the jscalendar widget have been changed to use the text widget
instead, since the jscalendar widget is no longer supported. Enable the Date Popup
module to make a jQuery popup calendar available and edit the field settings
to select it.

Figure 8-4

Then came a more disturbing but non-catastrophic red warning area with the following two messages:

user warning: Unknown column ‘f.nid’ in ‘field list’ query: INSERT
INTO image SELECT DISTINCT f.nid, f.fid, f.filename FROM files f INNER JOIN node n ON
f.nid = n.nid WHERE n.type=’image’ AND f.filename IN
(’_original’, ‘thumbnail’, ‘preview’) in
/home/awebfact/public_html/sites/all/modules/image/image.install on line 252.

204

Chapter 8: Upgrading to Drupal 6

and

user warning: Table ‘awebfact_drpl1.file_revisions’ doesn’t
exist query: DELETE FROM file_revisions WHERE EXISTS (SELECT * FROM image WHERE
image.fid = file_revisions.fid) in /home/awebfact/public_
html/sites/all/modules/image/image.install on line 255.

Next came a nice, reassuring central area showing that I had succeeded:

Updates were attempted. If you see no failures below, you may proceed happily to the
administration pages. Otherwise, you may need to update your database manually. All
errors have been logged.
Reminder: don’t forget to set the $update_free_access value in your
settings.php file back
to FALSE.

And there were no errors below, so w00t! Upgrade a success.

Next came the gray area below, showing me what changes had been made to the database, listing all
queries.

I hit the ‘‘Main page’’ link, and since my session had been knocked out, I went to http://awebfactory
.com.ar/user to log in as User #1 again. I then went to the Administration pages (http://awebfactory
.com.ar/admin).

There I was told that:

One or more problems were detected with your Drupal installation. Check the status
report for more information.

After clicking on the status report link, I was told that access to update.php was not protected (which
I corrected by re-editing ./sites/default/settings.php as described above) and that Update notifications
had not been enabled. I clicked on the module administration page link to remedy that, enabled the
Update status module (now in the Core section), and clicked on the ‘‘Save configuration’’ button.

Step 8a: Enabling the Modules
Enabling the modules can be via the old ‘‘I’m feeling lucky’’ mode, or, if you have special cause for
concern after actually having read some of the module documentation, it can be done in a series of
steps — the ‘‘sure fire’’ modules first, then the question marks, then the difficult cases, one by one.

For each step, the process is, go to Administer � Site building �Modules and enable the module(s), then
run http://example.com/update.php.

I went ahead and enabled all the modules in the Content construction kit section, the Archive module,
and the Date, Date Copy, the Date Popup, and the Date Repeat modules. I enabled the Geshi filter, then
Image and Image Assist modules, Organic groups and Organic groups access control, then the Contact
Forms, Freelinking, Google CSE, S5 book, Service links, and TinyMCE modules. I enabled the Captcha
and Text Captcha modules, and finally, the Tagadelic module.

205

Chapter 8: Upgrading to Drupal 6

I was then informed that the content access permissions needed to be rebuilt. But first, I decided to run
update.php. This turned out to be an uneventful repetition of the last time (the work seemed to have
been done thanks to the mere presence of the modules beforehand during the Drupal core update),
and I seemed to be all set. I revisited the Administration pages and was told once again about the access
permissions, and that there were some problems with the Drupal installation. I clicked the status report to
find out what problems there might be first. Oh, it was about the need to rebuild the access permissions. I
went ahead and clicked the link that was offered, which took me to Administer� Content management�
Post settings, where I confirmed that I was sure I wanted to rebuild the permissions on the site content.
(I had used organic groups to manage access permissions to content in Drupal 5.) The process finished
well, and the upgrade seemed to be all done.

The site seemed to be working fine. I was soon sent back to the Administration pages and told that the
Date Timezone module required me to set the site’s timezone name, and the update status module told
me that no update data was available (I could check manually or else run cron). I checked manually
and saw that Module and theme update status was: ‘‘up to date.’’ I clicked the ‘‘set the timezone name’’
link, was taken to Administration � Site configuration � Date and time, and simply confirmed the same
configuration as in the previous release. Upon returning to the Administration pages, there were no more
pesky but useful and informative red warnings.

The only thing remaining now was to update my custom Drupal 5.x theme to Drupal 6.x.

Before attempting to do so, I backed up the database into ./sites/all/backup/db/awebfactory.sql and
then did a complete backup of the filesystem. The upgrade to Drupal 6.x was complete except for the
theme and the blocks that had been supported before.

One other problem I ran into was that my archive (supported by the archive module) had disappeared! I
went to Administer � Site configuration � Archives and re-selected the checkbox beside the blog content
type, and this problem was rectified.

Step 8b: Upgrading the Theme
For most Drupal users, upgrading the theme will be about finding the Drupal 6.x version of the theme
they have been using, installing it, and configuring it in a similar fashion to its Drupal 5.x counterpart.

Before you even start messing with the theme, make sure that you have an administration theme you
can trust. That way, if your site breaks because of a faulty theme, you can at least disable it temporarily
should that be necessary.

In my case, though, I had a custom Drupal 5.x theme I had to upgrade myself.

First of all, I read over the recommended ‘‘Converting 5.x Themes to 6.x’’ article at http://drupal.org
/node/132442.

Following the instructions I found there, I did the following with my theme:

206

Chapter 8: Upgrading to Drupal 6

Steps Taken to Adapt a Simple Custom Drupal Theme to Drupal 6.x

Steps Description

Create an initial .info file Example (awebfactory.info):
name = awebfactory
description = AwebFactory blog theme.
core = 6.x
engine = phptemplate

There is no Step 2: The custom theme is very
simple, consisting only of a few files.

awebfactory.info
node.tpl.php
style.css
page.tpl.php
screenshot.png
/images

So I headed over to Administer � Site building � Themes, and apparently by virtue of the .info file, there
was my theme! I enabled it and selected it as the default, then hit the ‘‘Save configuration’’ button.

But I got the following fatal error:

Fatal error: Call to undefined function adsense_display() in
/home/victorkane/Work/AWebFactory/awebfactory.com.ar/public_html/
sites/all/themes/awebfactory/page.tpl.php on line 27

OK, I didn’t expect it to be that easy. Ah, a problem with the adsense module, which must have changed
somehow. I guess that’s what Greg Knaddison meant when he said, ‘‘Read up first.’’ Well, lucky I’m
using a test site!

What are you to do in a situation like this? Stay calm! First off, see if the module is even there. You may
have forgotten to include it. Second, read the module documentation. Third, check out the module issues
and support queues. And if still necessary, fourth, fire off a question in the hugely active Drupal Support
Forum. Then, stay there to help out others who come along with the same question!

Actually, you should do what everyone forgets to do: look at what the error message is saying: ‘‘call to
undefined function’’! First, head over to the documentation of the module . . .oops! Where’s the module? I
forgot to include the module in the module inventory, and I forgot to even install it. Undefined function,
indeed! Since I realize that this may happen more with me than with you, I should perhaps just correct
this chapter, but I said I would report realistically on the whole process, and who knows, this could
happen to someone else, so . . .:

1. Include the omitted module in the module inventory (site documentation).

2. Go to http://example.com/admin so the Admin theme kicks in.

3. Install the module.

4. Disregard all messages until you run update.php.

5. Site’s up!

207

Chapter 8: Upgrading to Drupal 6

Cool. Now the theme is running. That’s it! But wait: where are my blocks? Head over to Administer �
Site building � Blocks. There are my blocks! They are all assigned to the right sidebar region. Maybe if I
hit ‘‘Site configuration,’’ they will show up again! Nope. Who took my blocks?

Calming down, and drinking some more of that fine Argentine yerba mate, I notice that being on Admin-
ister � Site building � Blocks, I should be seeing all the blocks marked in yellow, shouldn’t I? Ah, there’s
only one block showing up like that! Content. The content block. I guess I should be grateful for that
because otherwise nothing would be showing up at all.

I head over to ‘‘Converting 5.x Themes to 6.x’’ section of the Drupal handbook (http://drupal.org/node
/132442) and gratefully click on the ‘‘Defining block regions’’ link.

It says that regions are defined in the .info file:

regions[left] = Left sidebar
regions[right] = Right sidebar
regions[content] = Content
regions[header] = Header
regions[footer] = Footer

But my theme doesn’t use any but the standard regions, so that is not my problem. Ah! A little further
down, it says:

"The variable names for side bar block regions and footer has been changed.
In 5.x the regions "left", "right" and "footer" used the variables $sidebar_left,
$sidebar_right and $footer_message inside page.tpl.php. This was ancient cruft that
was needed in 4.6 and below.

To make it cleaner and more straight forward, the three regions create variables of
$left, $right and $footer just like any other region. $footer_message is still
used but it’s for the footer message set from site information administration page."

Cool! So, using a text editor, I edit my theme’s page.tpl.php file and make this correction.

Before:

<div id="sidebar_right">
<?php if ($sidebar_right) { ?>

<?php print $sidebar_right ?>
<?php } ?>
</div>

After:

<div id="right">
<?php if ($right) { ?>

<?php print $right ?>
<?php } ?>
</div>

Got my blocks back! But . . .they are not where they are supposed to be! Instead of floating off to the
right, they have all fallen down into the content area and you can’t see them unless you scroll down.
What gives?!

208

Chapter 8: Upgrading to Drupal 6

A few minutes working with the magic Firebug add-on for Firefox (don’t leave home without
it: https://addons.mozilla.org/en-US/firefox/addon/1843) showed me what the problem
was. Because I had changed the ID attribute to right instead of sidebar_right, I had to make a
corresponding change in the CSS file. Instead of:

#sidebar_right{
width: 210px;
float: right;

}

I needed:

#right{
width: 210px;
float: right;

}

So now I had my blocks, but . . .they were in the wrong order. Better change the weights But wait,
where are the weights in the block configuration form so I can order my blocks? (Figure 8-5 shows the
Drupal 5 block admin page, and Figure 8-6 shows the same page in Drupal 6.) What gives?

Figure 8-5

209

Chapter 8: Upgrading to Drupal 6

Figure 8-6

Oh my, AJAX admin goodness! You don’t need weights; you can just move them up and down by drag-
ging the move icon on the left-hand side of each block entry in the table. One of the great reasons for
upgrading to Drupal 6!

Just one more weird thing happened. I never administer the site as User #1, which is considered bad,
insecure practice. So I logged in as my usual Admin user and was told to check the status report, so I
clicked on ‘‘status report.’’ The adsense module was complaining about the Publisher ID not being set,
so I clicked on the handy link to the module settings page . . .and got an ‘‘Access Denied’’ page.

Accordingly, I went back to the Administration pages and looked for the first one in the ‘‘User manage-
ment’’ section, good old ‘‘Access control’’ . . .and it wasn’t there! OMG! The usability team strikes again.
Well, actually, I have to be open-minded. I suppose Permissions is a little more intuitive than Access con-
trol, especially for you, gentle reader, who has never had to figure out that ‘‘Access control’’ was where
you set the permissions. But it is in second place now, under ‘‘Access rules.’’ All over the world, thou-
sands of Drupal administrators are going to ‘‘Access rules’’ and realizing that is not what they want, then
going back and remembering to go to the second one. Well, that’s progress for you.

So I hit ‘‘Permissions’’ and . . .set my permissions for the Admin role.

And to this day, you can see the results of the work done here, at http://awebfactory.com.ar, proudly
running Drupal 6.x! And then 7.x, and so on and so forth.

210

Chapter 8: Upgrading to Drupal 6

Step 9: Re-running All Site Acceptance Tests
Here is where having acceptance tests really pays off. They can always serve as regression tests to make
sure your site is functioning correctly after major overhauling.

Basically, testing the site consists of going through all of the ways users interact with the site (all the
use/test cases) to make sure functionality behaves as expected.

In the case of a blog, this is pretty straightforward, but even so, it is handy to have a documented list of
use cases to run through. That way, you can delegate the testing to another person and get even better
insights on how things really are.

As an important part of this testing procedure, do make sure that all your content is
still there before deploying to production.

Step 10: Deploying
After ensuring that you have your backup for the production site, just erase it and replace it with both
code and database from your upgraded test site. If users other than yourself can add content to your
production site, you will have to come up with a way to move anything added since you dumped the
database to do the upgrade on your test site, even if it’s only by manually re-entering a couple of posts
and comments. On extremely busy sites where this is not an alternative, the test site should serve as a
way of perfecting the procedure and assembling all the necessary files; then the production site should
be taken off-line and the upgrade procedure carried out there. Of course, you can simply use your usual
deployment method, perhaps by running an update against the site repository.

Summary
In this chapter, you have seen a complete upgrade from Drupal 5 to Drupal 6 for a simple but nontrivial
Drupal site, involving the Drupal core itself and a fair number of modules. The steps for carrying out
this upgrade, the best practices to be followed, including the recommendation of using a test site, and the
sources of gaining insight into the pitfalls and detailed information that might be necessary are outlined.

The steps have been followed, and the upgrade has been carried out. In the following chapters, you will
be exploring the added benefits of Drupal 6, which unfetters us in terms of placing the functionality and
presentation theme for our example website application, the On-Line Literary Workshop, on a rich and
firm foundation.

211

Upgrading to Drupal 6
Revisited

So you’ve decided to upgrade your site to Drupal 6! This section is meant to guide you through that
process, after having gleaned from both experience and the best advice out there the concrete steps
you should follow. The eight steps involved in any upgrade are:

1. Shift everything over to a test site (you may already have one, but this is just to make
sure you are acting on the real McCoy, just in case you are not using version control).

2. Update everything to the latest Drupal 5.x version available, not only for Drupal core,
but also for all the modules you are using.

3. Test everything running in the latest and brightest 5.x version.

4. Make a module inventory, and see which modules might not yet have been upgraded
to a Drupal 6.x version. The modules that you have installed are the most important
factor in determining how easy or difficult, or even possible, the upgrade process will be.

5. Switch to the default Drupal theme. Research whether or not your theme is available
in a version for Drupal 6.

6. Disable all modules. Now, do not uninstall any of the modules — you don’t want to
disturb your data. You just want to leave the field clear for the Drupal 6.x core database
upgrade to take place first.

7. Update the Drupal core.

8. Update each of the modules and the theme.

Pinch yourself: It’s alive!

However, even though each of these steps will always be present, they may vary in significance and
the amount of work involved and the problems encountered in each case. The aim here is to cover
as much of what you will realistically come up against rather than sharing yet another abstract
guide; the material presented here is based on a single, although very representative and decidedly
nontrivial, case study.

Chapter 9: Upgrading to Drupal 6 Revisited

Shifting Everything over to a Test Site
In this example, it is assumed that the whole site is maintained under version control, but in a very
Drupal-specific manner:

Drupal core was originally checked out and updated as different releases came out, directly from
the Drupal CVS repository.

The ./sites directory is then physically removed and replaced with a development branch
(HEAD) of an SVN repository.

The reasons for this are quite simple: It is so easy to carry out a Drupal core update on the command line
that any other method used is asking for trouble. You will see an example presently. On the other hand,
just because the Drupal community, for reasons of its own, sees fit to version its development in a CVS
repository is no reason why you should. You can use Git, Mercurio, or, as is the case here, SVN, as more
modern and more versatile alternatives.

So, shifting over to a test site involves the following steps:

1. Dump the database to a text file capable of being versioned.

2. Commit everything from ./sites on down to the SVN development repository.

3. Create a new database on the test site.

4. Check out the latest Drupal 5.x version from the Drupal CVS repository, into the new appli-
cation document root, like this: $ cvs -z6
-d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal
co -d www -r DRUPAL-5-10 drupal.

5. Edit ./sites/default/settings.php so that Drupal will be able to speak to the newly created
test site database.

6. Edit the file .cvsignore in the root directory to contain ‘‘./sites/default/settings.php’’ so that
future updates won’t overwrite that file.

7. Check out the development version from the SVN repository by executing a command simi-
lar to the following: $ svn co http://mysvnaccount.svnrepository.com/svn/litworkshop
/trunk/sites sites sites.

8. Insert the file ./sites/all/backup/db/litworkshop.sql into the MySql database.

And you’re done. Point your browser at the domain or subdomain corresponding to the document root,
and you should be good to go.

Update Everything to the Latest Drupal 5.x
Version

In Chapter 7 you did this, but in case you are working with a site that has not been updated, if your site
is still at Drupal release 4.7.x, then you need to update to the latest version of Drupal 5.x first. Then, all

214

Chapter 9: Upgrading to Drupal 6 Revisited

modules must be updated to their latest version available because it is that version that will have taken
into account the best logic necessary for upgrading to Drupal 6.x.

As explained earlier, take the time to test your site with the latest and greatest modules, and make sure
nothing is broken or out of the ordinary, because later on, you won’t know if any unexpected behavior is
due to the upgrade to Drupal 6.x or the upgrade carried out at this stage.

Then you are ready for the next step, taking the module inventory.

Module Inventory for the On-Line Literary
Workshop

At this point, you need to know all about all your contributed modules, that is, those that are not part of
Drupal core (those that are not included as part of the regular Drupal release). For each one, you need
to know whether there exists a recommended or at least stable version for Drupal 6.x, and you need
to research in the issue queues for each one of them for common caveats, pitfalls, and other problems
encountered by others who have already carried out the upgrade.

module name Recommended
Drupal 6.x version?

notes (as of August 2008)

cck Yes Completely rewritten and enhanced. Must
use Drupal 6.3 or later to avoid problems
upgrading.

date Yes Great number of new features

drush Yes

globalredirect Yes

nodequeue rc1 rc1: Release Candidate 1

og Yes

pathauto Yes

privatemsg No The HEAD version is for Drupal 6.

tagadelic Yes

themesettings,
themesettingsapi

Part of core Disable and uninstall completely, just like
update_status module.

token Yes

update_status Part of core Disable and uninstall completely.

views Yes Completely rewritten and enhanced

215

Chapter 9: Upgrading to Drupal 6 Revisited

Preparatory Steps before the Point of No
Return

There are a few preparatory steps to follow before replacing the Drupal core and modules with their
Drupal 6.x counterparts:

1. Log in as User #1 (Admin).

2. Switch back to the default Drupal theme (themes/garland).

3. It’s necessary to disable and completely uninstall the update status module, since it has
ended life as a contributed module and has now begun life as part of the Drupal core.
But there is no need to disable all non-core modules, because by their presence they
will automatically update, given the manner in which Drupal 6 upgrades. You’ll have
to deselect modules and click on the ‘‘Save configuration’’ button several times because
module dependencies will gray out the checkboxes next to those modules being used as a
dependency by another module.

Do not disable, in actual fact, the other non-core modules. I tested this procedure several
times, and the whole procedure went much more smoothly by leaving all the modules
enabled except update_status and themesettings, as described above. Again, it bears
repeating that the latter are special because they are now part of Drupal core, and vestiges
of their old versions as contributed modules will cause problems.

4. Once the Update Status module and the Theme Settings and Theme Settings api modules
are disabled, click on the Uninstall tab, and select the checkbox next to the Update Status
module. Click Uninstall to delete it from the system completely, because it will be in the Dru-
pal core with Drupal 6 and the existing tables will cause problems if they are not removed
entirely from the database. Leave all the other modules in this list alone, and do not uninstall
them, because you don’t want to destroy any content or configuration settings.

Physically Replacing the Drupal 5
Contributed Modules

Because all contributed modules in ./sites/all/modules are under SVN version control, you don’t have
any choice, actually, and must proceed as follows, first removing them from SVN and then adding
them in:

∼/litworkshop/sites$ svn rm all/modules/date
∼/litworkshop/sites$ svn rm all/modules/drush
∼/litworkshop/sites$ svn rm all/modules/globalredirect
∼/litworkshop/sites$ svn rm all/modules/nodequeue
∼/litworkshop/sites$ svn rm all/modules/og
∼/litworkshop/sites$ svn rm all/modules/pathauto
∼/litworkshop/sites$ svn rm all/modules/privatemsg
∼/litworkshop/sites$ svn rm all/modules/tagadelic
∼/litworkshop/sites$ svn rm all/modules/themesettings
∼/litworkshop/sites$ svn rm all/modules/themesettingsapi

216

Chapter 9: Upgrading to Drupal 6 Revisited

∼/litworkshop/sites$ svn rm all/modules/token
∼/litworkshop/sites$ svn rm all/modules/update_status
∼/litworkshop/sites$ svn rm all/modules/views
∼/litworkshop/sites$
∼/litworkshop/sites$ svn committ -m "removed all Drupal 5 \ contributed modules
preparatory to Drupal 6 upgrade - do not check out this revision"

Next, download and decompress all the Drupal 6 module version replacements you’ll need except
themesettings, themesettingsapi, and update_status to be omitted, and postpone the privatemsg
module until the upgraded system is stable to ./sites/all/modules. Once the system is up and running,
these directories will be added to version control once again, and committed en bloc.

Update Drupal Core and Run the Update
Script

If you have Drupal core under version control, simply change the directory to the Drupal document root
and execute the following:

∼/litworkshop/sites$ cvs update -dPr DRUPAL-6-3

replacing DRUPAL-6-3 with the latest version if greater. Otherwise, delete all the Drupal core files and
replace them with the latest Drupal 6.x version no earlier than 6.3.

It bears emphasizing that in ./sites/default there is a new file called default.settings.php that changes your
basic default settings file. This file should be used as the basis for your new settings.php file, which should
simply be a copy of default.settings.php with your database URL inserted in the appropriate place, plus
any other site-specific changes you deem necessary.

Then you want to follow these steps:

1. Still logged in as Admin (User #1), execute http://litworkshop.example.com/update.php.
The result should be the Overview page of the Drupal database Update Wizard.

2. After clicking ‘‘Continue,’’ you have the chance to select updates before clicking on the
Update button. After doing so, 81 updates are carried out, and you should be taken to what
is essentially a success page, which includes some informational messages in green, possible
warnings in pink (which tend to be ignored unless they stop the show), general information,
and links to the main and administration pages, as well as the SQL query of all the updates
that were executed. It is definitely a good idea to save this page for future reference. Then,
click on the ‘‘Administration pages’’ link to continue.

3. Go to Administer � Site building �Modules, and hit the ‘‘Save configuration’’ button
to clear the cache. Now that the smoke has cleared, you can go in and see what you
have. At this point, the site should be basically navigable and recognizable, with some
things broken since some functionality depends on the theme that has been disabled. For
example, Figure 9-1 shows how the quote block is still working but is now divested of its
theming and placed on the left-hand side, but that the Genre parade block is still there. The
views-supported Browse Literary Pieces block, however, has disappeared.

217

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-1

4. Now head over to Administer � User management � Permissions (this used to be called
Access control). Scrolling down, you can see that there are additional permissions added for
node content, and a wonderful Ajaxy improvement is that the names of the roles are now
always visible as you scroll down the page. (See Figure 9-2.) Apply the new permissions as
needed.

Solving Problems with Organic Groups
At this point, before attacking the theme or the Views situation, you may need to solve some Organic
Groups problems.

Log out as Admin and log in as dev. When you do this, you can see that you have two concrete problems:

Escaped PHP is showing up in the ‘‘My groups’’ View.

The group home pages are no longer showing the group’s posts.

218

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-2

Escaped PHP Showing up in My Groups View
When you click on the Groups main item at the top of the page, you get a correct listing of the groups
directory; in this example, this lists the Haibun group, its manager, and the number of members. (The dev
group, which houses the project documentation, is configured not to be listed in the groups directory.) So
far, so good. But when you click on the ‘‘My groups’’ tab, the screen shows escaped PHP in the header
and in the footer, as shown in Figure 9-3.

This is a known, closed issue upon upgrading to Drupal 6, and is ‘‘perfectly normal.’’ You simply need to
understand clearly what is happening and then fix it. First off, in Drupal 6, the whole ability to use PHP
snippets through an optionally applied filter to content items has been wisely abstracted out into its own
core module. If one enables this module, then, assuming that you have the correct permissions, you can
create a page, specify the PHP filter instead of the Full HTML filter, for example, and specify content as:

<?php print ‘<p>’ . $date . ‘Welcome</p>’; ?>

as an alternative to HTML or plain-text content. Now, what are you doing when you click on the ‘‘My
groups’’ tab? You are invoking a View, specifically the og_my View, which has a header and a footer and

219

Chapter 9: Upgrading to Drupal 6 Revisited

which need to be expressed in terms of PHP, in order to include a link to the list of groups you belong
to (your subscriptions) in OPML format. There’s the rub. For this to happen, a series of conditions has to
be met:

1. First off, go to Administer � Site building �Modules, and ensure that the new core PHP
filter module is selected. If it is not, select the checkbox and enable the module as usual by
clicking on the ‘‘Site configuration’’ button.

2. Return to Groups �My groups. If the problem persists, you will need to edit the View. This
is remarkably simple. If you mouse over the area just under the ‘‘My groups’’ heading visi-
ble at the top of the content area in Figure 9-3, three tiny, very handy links appear, allowing
you to click them to easily edit, export, or clone the View being presented (see Figure 9-4).

Figure 9-3

Figure 9-4

3. Click on the [Edit] link. Of course, you can accomplish the same thing by going to Adminis-
ter� Site building� Views and opting to edit the og_my View. Once you are at Administer�
Site building � Views � Edit view ‘‘og_my,’’ you make first contact with the all-new Views 2
editing screen, which manages to show everything in a relatively small area, and through the

220

Chapter 9: Upgrading to Drupal 6 Revisited

use of Ajax, makes editing or creating a View very handy and straightforward. At the top
of the page is an information item that tells you about the all-new advanced Help module,
which you will come to in a moment (it deserves a chapter in itself). What you need now is to
look at the ‘‘Basic settings’’ section in the second column. This shows settings like the Name
(Page), Title (My groups), Items per page, and so on of the page display that concerns us at
this point. Notice that both the header and footer have Full HTML links next to them. That is
the problem. Change the Header input filter first by clicking on the ‘‘Full HTML’’ link.

Full HTML changes to bold, and if you scroll down just a little, you can see that a new work
area has opened up, allowing us to edit the header. Figure 9-5 shows how the page looks
after opening up the Input filter section and clicking on the PHP code radio button.

Figure 9-5

4. Click on the ‘‘Update default display’’ button, and repeat the process for the footer, and then
click on the ‘‘Save’’ button for your changes to take effect. Figure 9-6 shows that the ‘‘My
groups display of escaped PHP’’ problem has been solved.

221

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-6

Group Home Pages No Longer Showing the Group’s Posts
This was a big problem. Figure 9-7 shows how the dev group home page shows the description of the
group and then lists the posts that have been made within the group. Figure 9-8 shows how the listing of
the group’s posts has been lost.

Figure 9-7

222

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-8

As you recall from Chapter 6, this is handled by a specially implemented view, by default called
og_ghp_ron (group home page River of News), which you then learned how to override with
og_ghp_table via the user interface by going to Administer � Organic Groups � Organic Groups
Configuration and choosing from the list of all views having the og_ghp_ prefix. Before you go scrambling
to do that exact same thing now, bear in mind the following excerpt from the Drupal 6 Organic Groups
README.txt:

"The user interface for selecting alternate Views for your group homepage is gone.
You may still select an alternate view by setting ‘og_home_page_view’ variable in
your settings.php. Alternative, just customize your og_ghp_ron View. You can
always revert it if it breaks"

So probably what’s going on is that the variable og_home_page_view is stuck with the value it was given
via the user interface in Drupal 5 (og_ghp_table), and so does not invoke og_ghp_ron, the new default.
Why doesn’t it just invoke og_ghp_table, then? Heading over to Administer � Site building � Views
shows that all the views that you created in Drupal 5.x are now missing.

So what about importing og_ghp_table from the Drupal 5.x version (still running on the test site) and
seeing if that will just work?

1. In the old version, go to Administer � Site building � Views, and click the export link corre-
sponding to og_ghp_table.

2. Select and copy the code.

223

Chapter 9: Upgrading to Drupal 6 Revisited

3. In the new version, click on the Import tab, and paste in the code.

4. Leaving the view name blank, click on the Import button. The result can be seen in
Figure 9-9.

Figure 9-9

The warning clearly states:

"You are importing a view created in Views version 1. You may need to adjust
some parameters to work correctly in version 2."

After studying the default og_ghp_ron parameters for the default display, make the following changes:

1. Remove the Page display by selecting it from the tab at the right and hitting the Remove
button.

2. Add the ‘‘og’’ tag (views have tags now, so it is easy to sort and view them for administrative
purposes).

3. Add the Organic groups: Groups argument, so that the view can be invoked for any group
simply by the Organic Groups module providing the node ID of the group whose home

224

Chapter 9: Upgrading to Drupal 6 Revisited

page is being displayed. That is how the view og_ghp_ron works, and this view needs it also
in order to work. When you click the + icon in the Arguments section, a work area opens
up below, allowing you to choose a category of arguments (choose ‘‘Organic Groups’’), and
then within that category, the item Groups. See Figure 9-10.

The fields were already imported, so no changes there!

Figure 9-10

4. Add the same sort criteria and filter as og_ghp_ron.

Now the really cool thing is that you can actually get a live preview to see if the view is working as you
configure it. That’s how you know you’re done!

The last time I edited the dev group node, I noted down that its node ID was 21 (well, not really, but if
you go to ‘‘My groups’’ again in another browser window, click ‘‘dev,’’ then hit the Edit tab, the URL
will be /node/21/edit, meaning that the NID of the group node for the dev group is 21). So if you scroll
down to the ‘‘Live preview’’ section, provide 21 as the argument (or 20 for the Haibun group), and click
on the Preview button, you will see the results right there, plus be shown the SQL query executed (Views
is, indeed, a SQL query generator) and other useful information. The Views 2 user interface has improved
by leaps and bounds! See this in action in Figure 9-11.

225

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-11

Save your work, go to the ‘‘My groups’’ page, and then click ‘‘dev’’ — lo and behold, you have your
group home page restored!

Getting the Old Views Back
You have already gotten one of the old views back. There is another view missing from your website
application which you had fixed up to appear in every page footer — the Browse Literary Pieces view
(see how it is present in Figure 9-7 and absent in Figure 9-8).

Following the same procedure as before, export the view (genre_browser) from the test site that is still
running Drupal 5.x, and import it onto the new site. This time you need a block display you can then
configure as before in Administer � Site building � Blocks.

The view imports well, with its page and block displayed. Everything is almost all set to go, except that in
the Fields section, while the node title, author username, and date of last update have imported correctly,
one field is described as having a broken or missing handler. If you edit the view on the test site just to
see what’s going on, you see that this field was actually Taxonomy: Terms for Tags, with label Genre:

1. Click the + icon to add in the closest thing you can find (Taxonomy: Term) and give it the
same label, and then remove the broken field.

226

Chapter 9: Upgrading to Drupal 6 Revisited

2. Positioning the field is a breeze! Click on the double-arrows icon, and then in the work area,
drag ’n drop! Awesome.

3. Now, fix the filters:

3a. Go in and fix the Node type filter, which needs to specify Literary Piece. Upon fixing
that and hitting the Update button, ‘‘Live preview’’ already shows that the view is
practically working again!

3b. Remove the broken handler.

3c. Click on the + icon in the Filters section, and in the work area select Taxonomy from
Groups.

3d. Select the checkbox next to Taxonomy: Vocabulary (‘‘Filter the results of ‘Taxonomy:
Term’ to a particular vocabulary’’).

3e. Click on the Add button, and immediately you get to choose which vocabulary you
wish to filter by.

3f. Leave ‘‘Is one of’’ as the operator, select Tags as the vocabulary, and click on the
Update button. The Live Preview is really shaping up!

3g. Click ‘‘Taxonomy: Vocabulary’’ once again, and hit the Expose button, to make the
view the same as it was before.

4. Go ahead and save the view.

5. Go to Administer � Site building � Blocks, assign the genre_browser block (which now
appears after the creation of the view of the same name) to the Content bottom region, and
click on the Configure button.

6. As you did before, in the Page specific visibility settings, make sure that the option ‘‘Show
on every page except the listed pages’’ is selected, and then in the text area, list, one per line,
the following exceptions:

browse/genre
admin/*

This avoids the listing showing up with, erm, the listing, and avoids it showing up on
Admin pages.

7. Fill in a Title and save the block.

Figures 9-7 and 9-8 should now be identical.

Installing the Advanced Help Module
When you were fixing the og_my and og_ghp_table views, you saw the following information message
at the top of the View Edit form:

If you install the advanced help module from http://drupal.org/project/i
advanced_help, Views will provide more and better help. Hide this message.

227

Chapter 9: Upgrading to Drupal 6 Revisited

This Advanced Help module can also be used by you for your sites, so it is certainly well worth down-
loading and installing. It enables placing an arbitrary number of Help links that pop up pure HTML Help
pages into a small separate browser window. Really awesome, and yet another part of the solid advance
in Drupal usability that comes with each release, by leaps and bounds. Follow these steps:

1. Download the module and install it in the usual way.

2. Go to Administer � User management � Permissions, and grant all three Advanced Help
permissions to all authenticated user roles.

3. After saving the permissions, head over to Administer � Views. To the left of each View title
bar can now be found a tiny question-mark icon, which turns bright blue when moused over.

4. Clicking on the question-mark icon brings up the help associated with that link in a small
browser window. See Figure 9-12.

Figure 9-12

There has never been anything like this in Drupal before. Clicking on the Views link in the pop-up
breadcrumb takes you to the index, where you can get a full education in Views 2. Also, try it for
context-sensitive help while actually editing a view. Clicking the Help icon next to, say, Arguments,
will bring up detailed help on the subject. This is also available for the Node Queue module. You can
find more on Advanced Help and how to make use of it for your own sites later on in this book.

228

Chapter 9: Upgrading to Drupal 6 Revisited

Upgrading Your Zen Theme to Drupal 6.x
At the end of Chapter 7, you created a subtheme based on the Zen theme system. In order to upgrade it
to Drupal 6.x, you are going to have to be a bit drastic because it is a huge jump, but you will still be able
to put your prior work to good use:

1. Copy your subtheme over to some safe location outside your site. Then remove all themes
from the ./sites/all/themes directory. If they are under version control, use SVN for this as
follows:

∼/litworkshop/sites$ svn rm all/themes/litgarland/ all/themes/zen/
∼/litworkshop/sites$ svn commit -m "Removed Drupal 5 contributed themes
during upgrade to Drupal 6"

2. Download the latest version of the Zen theme for Drupal 6 from the project site
(http://drupal.org/project/zen), and install it under ./sites/all/themes.

3. Create a fresh copy of the subtheme by renaming a copy of ./sites/all/themes/zen
/STARTERKIT to ./sites/all/themes/zen/zenlitworkshop.

4. Rename ./sites/all/themes/zen/zenlitworkshop/STARTERKIT.info to ./sites/all/
themes/zen/zenlitworkshop/zenlitworkshop.info. This general description and speci-
fication file is required for all themes, starting with the Drupal 6 release, as explained in
Chapter 8.

5. Edit it with a text editor, and rename all occurrences of STARTERKIT zenlitworkshop,
change the name field value to On-line literary workshop theme, and change the
description field value to Zen based theme for the On-line literary workshop.

6. Edit ./sites/all/themes/zen/zenlitworkshop/template.php and ./sites/all/themes/
zen/zenlitworkshop/theme-settings.php with a text editor also, and rename all occurrences
within each one of STARTERKIT zenlitworkshop.

7. Because you used a liquid layout previously, copy ./sites/all/themes/zen/zen/layout-
liquid.css to ./sites/all/themes/zen/zenlitworkshop/layout.css, being careful not to over-
write any changes you might have made to this file. One way to do this is using the diff
in Linux (or the great Windiff in Windows). Notice how the filename is renamed to plain
layout.css.

8. Copy ./sites/all/themes/zen/zen/print.css to ./sites/all/themes/zen/litworkshop/
print.css.

9. Copy ./sites/all/themes/zen/zen/zen.css to ./sites/all/themes/zen/zenlitworkshop/
zenlitworkshop.css. Notice how the filename is renamed. This is the main style sheet for
your subtheme.

10. Now, what about the other changes that were specific to the Drupal 5.x version
of the zenlitworkshop theme? Copy the quote content type-specific suggestion
node-quote.tpl.php file into ./sites/all/themes/zen/zenlitworkshop along with the
template node.tpl.php. You can do the same with the page.tpl.php file. Neither the latter nor
node.tpl.php has changed significantly.

229

Chapter 9: Upgrading to Drupal 6 Revisited

The node-quote.tpl.php will have no effect whatsoever on nodes of type quote if it
is placed in the zenlitworkshop subtheme directory until it is also accompanied
by the template file from which it is derived, node.tpl.php. Both have to be there. See
http://drupal.org/node/223440 for the explanation.

11. Now, a lot of changes have been made to zen.css, so the 5.x version of zenlitworkshop.css
cannot be simply copied over. You need to copy the changes made to it over to the new zen-
litworkshop.css.

12. So, how do you know what changes you made to zenlitworkshop.css? By using the UNIX
utility diff in the following manner: head over to the 5.x version of the litworkshop zen
subtheme you saved in a different location, and on the command line change directories to
the zenlitworkshop subtheme. Then do the following (comparing the main style sheet to the
original one of that version):

∼/zenlitworkshop$ diff zenlitworkshop.css ../zen.css
34d33
< background-color: #d3d3ff;
106,111d104
< background-color: #fff;
< }
<
< /* This makes a big difference! */
< #mission, #content-top, #content-area, #content-bottom, .feed-icons{
< padding: 5px;
116d108
< background-color: #e9e9ff;
121d112
< background-color: #e9e9ff;
244d234
< background-color: #d3d3ff;
736,740d725
<
< /* Random Quote block */
< #content-top .taxonomy {
< margin-left: 400px;
< }
∼/zenlitworkshop$

Not too bad! Go ahead and effectuate the same changes to the new zenlitworkshop.css file.

Starting with release 6.x, a new change in Drupal obliges you to clear the Drupal theme registry when-
ever you add or remove functions and/or templates. You are not adding or removing any functions in
template.php in this case, but you are adding a template (node.tpl.php), required for node-quote.tpl.php.
For your changes to go into effect when you enable the new subtheme, clear the theme registry by visiting
Administer � Site configuration � Performance and clicking the Clear Cached data button at the bottom
of the form.

You have now prepared your subtheme. After making sure the standard Drupal theme is specified as the
default administration theme, clear the Drupal theme registry, enable the zenlitworkshop theme, and
make it the default theme. Voilá! After all this work, it will be necessary to do some work to make your
original theme prettier, but all in good time.

230

Chapter 9: Upgrading to Drupal 6 Revisited

The All-New Devel Module
Before you commit all your work and call it a day on the upgrade path, it will be well worth the effort to
include the all-new Devel module in the mix. Just as Earl Miles (merlinofchaos) has made a tremendous
contribution with the Panels (you will see this in a later chapter), Views, Nodequeue, and Advanced
Help, as well as the Update Status modules, Moshe Weitzman has also, as the author of Organic Groups
and a host of other work in the Drupal Community, including the Devel module.

The Devel module (http://drupal.org/project/devel), even though it has not made an appearance
yet in this book, has been around for quite some time. It has been popular since its inception, since it
makes available a host of helper and utility functions (summary of all database queries for the current
page complete with execution times, easy clearing of the cache, reinstallation of modules, access to Drupal
variables, a block for running PHP snippets on the fly, etc.). It had already established its ‘‘Don’t leave
home without it’’ status. And now, starting with Drupal 6, it includes what is billed (justifiably so) as the
‘‘Firebug for Drupal theming,’’ the Theme developer.

Follow these steps to install and get started with this module:

1. Download and install the module as usual, then enable all the Devel family, the Devel, Devel
generate, Devel node access, Macro, Nodequeue generate, and Theme Developer modules.

2. Click on the ‘‘Save configuration’’ button.

3. Head over to Administer � User management � Permissions, and grant all permissions to
the Admin role, and none to any other role, in the Devel module and devel_node_access
module sections. A common misconception is that Devel should not be installed on produc-
tion sites because it uses too many resources. Nothing could be further from the truth. It is
essential on all sites, including production sites. Simply do not grant any permissions to any
role other than the Admin role.

4. After saving permissions, go to the main page. Already, in the lower-left-hand corner, is a
transparent gray box with a checkbox and the label ‘‘Themer info.’’ Select the checkbox, and
immediately in the upper-right-hand corner appears the ‘‘Drupal Themer information’’ win-
dow, with the message, ‘‘Click on any element to see information about the Drupal theme
function or template that created it.’’ Because you know some theming went into the random
quote block, click on the Haiku tag in the Genre parade block, just to get off the main page,
and on the new page (/category/tags/haiku), select ‘‘Themer info’’ again, and immediately
mouse over the random quote area, which will immediately highlight with a red wireframe
similar to the Firebug inspect mode. Click on the highlighted area, and then click on the bot-
tom of the ‘‘Themer info’’ screen, on a box that says ‘‘Array, 50 elements’’). You should see
something like Figure 9-13.

The statement bears repeating: There has never been anything like this in Drupal before. Selecting the
object on the screen, you are told that it was rendered by the block.tpl.php template invoked via a them-
ing function at the time the page.tpl.php template was invoked to render the page, and that the first
invoked the node.tpl.php template in order to render the object itself. The node-quote.tpl.php file was
the one actually used via the polymorphic-like naming conventions common to the Drupal theming sys-
tem, as discussed in Chapter 7. And it was done in 9.01 ms (milliseconds). Additionally, you have before
you in the array display (bordered by gray and yellow) all the information about the node itself (the
attributes of the $node object itself). No more using PHP print_r statements in the code and templates
to see what’s what.

231

Chapter 9: Upgrading to Drupal 6 Revisited

Figure 9-13

To configure the Themer, follow these steps:

1. Go to Administer � Site configuration � Devel Themer. There is an option there to display a
theme log at the foot of each page, essentially the same information as in the pop-up browser
window, but somewhat more complete and copyable for documentation purposes.

2. To configure the Devel module itself, go to Administer � Site configuration�Devel settings,
where you can enable and disable all kinds of options. As someone trying to get the most out
of Drupal, you should experiment a lot with these options, and you will learn a great deal at
every step.

For example, enable ‘‘Collect query info’’ and ‘‘Display query log,’’ saving the configura-
tion and going to any page, for example /texts/joyce/elegy-tired-lakes. At the bottom of the
page, you can now see all the database queries that were necessary to render the page. It is a
little overwhelming at first, but yes, Drupal is a database-intensive framework. You can even
see the session information. But when it comes time to seeing where the bottlenecks are and
making sure you don’t have repeated queries and the like, this tool is invaluable.

3. Now enable three of the development blocks, just for the sake of familiarity. Go to Admin-
ister � Site building � Blocks, and enable the ‘‘Execute PHP’’ block in the Footer region, the
Development and ‘‘Switch user’’ blocks in the left sidebar.

Security Alert! At the time of writing this chapter, a security announcement was
made by the Drupal Security Team involving multiple vulnerabilities, and
maintenance releases were immediately made for Drupal 6.x and 5.x (the past
release is always supported in tandem with the current release). When you see that,
you drop what you are doing and install the maintenance releases. With Drupal 6.x,
just with the Update Status module enabled, the following is shown in the info area

232

Chapter 9: Upgrading to Drupal 6 Revisited

at the top of the content area every time you hit an Admin page so you can’t miss it
(which is a tremendous example of security awareness and responsiveness):

"There is a security update available for your version of
Drupal. To ensure the security of your server, you
should update immediately! See the available updates
page for more information."

4. From the Development block, you can disable and enable the Theme Developer (try it); you
can empty the cache (so if you add a template to your theme, that’s a single-click way of
clearing the theme registry and having it enter the scheme of things immediately); you can
execute the PHPinfo function and see all your system characteristics; you can run cron;
and . . . you can access the Variable Editor!

On this last note, let’s try it. After backing up the database, click on the Variable Editor link
and scroll down the page until you see the og_home_page_view variable. Click on the associ-
ated Edit link on the far-right-hand side of the screen. Very carefully, in the textarea, change
the og_ghp_table value to og_ghp_ron. You should see something like Figure 9-14 (notice
the handy URL).

Figure 9-14

233

Chapter 9: Upgrading to Drupal 6 Revisited

5. Now, in another browser window, check out the Haibun group home page. Instead of the
table view that took so much work getting into shape, you will now see the default River of
News blog-like display for the group’s posts.

6. Now, carefully change the value back to og_ghp_table. Home � Groups � Haibun now
shows your table style display as before! Neat using the Devel module, isn’t it? Don’t leave
home without it! Of course, you have to be careful about what you are doing.

7. So let’s execute some PHP code! After backing up the database (again), execute the following
harmless block of code by entering it into the Execute PHP block you enabled in the Footer
section:

global $user;
dprint_r($user);

And hit the Execute button. You will see a prettily printed out display of the $user object
with all its attributes.

And finally, the Switch user block will allow you to masquerade as james immediately, create some
content, and see things as james sees them, without having to log out and log in as james and remember
that password too. Of course, because james doesn’t have access to the Devel module, you will have to
log out and then log in as user dev again, but in any case, this is a very useful feature that you will find
yourself using time and again.

Committing and Deploying to the Test Site
Just as a word of reminder, you must add all the third-party modules in ./sites/all/modules as well as
the spanking new Zen subtheme back into the SVN repository. To do so, use either your favorite GUI
(RapidSVN or TortoiseSVN) or the command line. Don’t forget to include the database dump, and to go
ahead and commit also. With this upgrade you have hit a major milestone in the project.

Luckily, deploying the upgrade to the test site is relatively easy:

1. Log into your test site, and place it in maintenance mode (go to Administer � Site Configu-
ration � Site maintenance, select Off-line, and hit the ‘‘Save configuration’’ button).

2. Replace the Drupal core files with the 6.x version, and copy the ./sites/default.settings.php
file to settings.php, being careful to preserve your site-specific database information.

3. In the ./sites directory, carry out this command to update your themes and modules:

$ svn update

4. Now, remove all tables from your database (zap it completely — this is a test
site, and production content need not be backed up and restored), and restore
./sites/all/backup/litworkshop.sql to the database.

And you’re good to go!

234

Chapter 9: Upgrading to Drupal 6 Revisited

Summary
In this chapter, you have seen, once again, a complete upgrade from Drupal 5 to Drupal 6 for a simple
but nontrivial Drupal site, involving the Drupal core itself and a fair number of modules. The steps for
carrying out this upgrade, the best practices to be followed, including the recommendation of using a test
site, and the sources of gaining insight into the pitfalls and detailed information that might be necessary
are outlined and gone over step by step.

This second time around proved to be quite an eye-opener, because the views and og modules each
brought with them quite a bit in terms of added functionality and possibilities, not to mention the Devel
module: I can truly say, after writing this chapter, that if I had not been familiar with Drupal before, I
surely would start using it now.

In the following chapters, you will be exploring even more of the added benefits of Drupal in its latest
releases, as the On-Line Literary Workshop approaches its Beta and Final release versions, on its way to
launch and life as a Drupal installation profile.

235

Part IV

Getting the Most out
of Drupal 6.x

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Chapter 11: Full Swing Agile Approach to Drupal Development

Chapter 12: The jQuery Chapter

Installing and Using Drupal
6 Fresh out of the Box

To show how Drupal 6, with its enhanced functionality, can really kick-start your website appli-
cation right out of the box, in this chapter you will develop a self-contained website application
without installing a single additional module, with the exception of the ever-present CCK (and
associated Date) and Views modules, which everyone automatically installs as a matter of course
without giving it a second thought, and without which Drupal would not be Drupal.

The project, ‘‘Translation Studio,’’ consists of a multi-user, multilingual translation studio capable
of being used by both Translators looking for work and Clients who need to get their translations
done. Clients upload the work that needs to be done, a Translator Team Leader assigns the work
to registered Translators, and the Translators log in and create bilingual or multilingual versions of
the same document. When the work is ready to be downloaded, the Client is notified and logs in to
access and download his or her translations. Translators are paid a standard rate through an off-site
financial arrangement.

You will build this step by step, and, of course, as usual, the self-contained and fully functional code
for the chapter is freely downloadable.

Please note that just as in the case of the On-Line Literary Workshop, the steps to be followed in
building this website application mirror the best-practices workflow presented in Chapter 1 (see the
Main Process Workflow diagram and the explanation accompanying it at the start of the chapter).
Without exception, all successfully built and launched website applications I have been involved in
have followed a workflow similar to this, while all failures I have been associated with resulted from a
failure, for some reason, to follow them.

This time you will be following that workflow in a single chapter. The steps, tailored to the example
shown here, are as follows:

1. Install Drupal on a LAMP stack.

2. Design and build the architecture.

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

3. Create the business objects.

4. Create the site user workflows.

Step 1: Installing Drupal — Easier Than Ever
Before

For the first time, Drupal comes with an interactive Installation Wizard that guides you through every
step of the way. When you have finished the installation process, a settings file will be correctly config-
ured and will point toward your newly created database, which will be automatically populated with
the necessary tables and data. A good reference section on installing Drupal 6 can be found in the Drupal
Handbook Documentation at http://drupal.org/getting-started/6/install.

Downloading Drupal
First of all, go to http://drupal.org and in the upper-right-hand corner you will see the Download
block. Click on the latest version of Drupal. You will be taken to the Download link. Click ‘‘Download
Drupal 6.x,’’ and save drupal-6.x.tar.gz (where x will be the latest version of the Drupal 6 release) to your
local desktop or laptop.

As noted in earlier chapters, however, best practices for Drupal release installation is to grab the Drupal
files via CVS, since this makes for super simple updates and eliminates human and FTP errors entirely.
See:

‘‘Doing It with CVS’’ (Chapter 2)

‘‘Update Drupal Core and Run the Update Script’’ (Chapter 9)

Unzipping and Preparing Files for Upload
In this chapter, let’s take the approach simplest for people not familiar with using the command line, in
which you transfer all the files to your hosting server using an FTP client. Use your usual file manager to
unzip the downloaded file to the desktop or any other convenient folder. There’s just one chore to take
care of — go to ./sites/default, and copy the default.settings.php file to a new file called settings.php in
the same folder. While both files need to be present, Drupal will automatically install your settings info
in this new file you have created.

Uploading Files
Next, navigate to that folder with your favorite FTP client. On Windows and Mac, you might use FileZilla
(http://filezilla.sourceforge.net/), on Ubuntu gFTP, for example. Now follow these steps:

1. Make sure that ‘‘hidden’’ files are visible, since it is essential not to leave out the .htaccess file
in the upload.

2. In the destination panel of your FTP client, connect to the document root of the domain or
subdomain where you have decided to install Drupal. If this is not a full-blown production
install, you will be best served by at least creating a subdomain using your CPanel or hosting
panel, which will associate a subdomain like http://translationstudio.example.com

240

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

with a subdirectory immediately below your main document root. In this way, you have the
best of all possible worlds: You don’t hog the document root itself on your hosting server,
but you can address all images and other files with an ‘‘absolute relative’’ path, such as
‘‘/files/images/special-icon.png.’’ In other words, by using a subdomain, Drupal resides in
a subdirectory but thinks it is in a document root.

3. Transfer all your files to the destination folder on your hosting server.

4. Before you create the database you will be using for your Drupal installation and running
the Installation Wizard, there is just one chore to do, which is to make the uploaded
./sites/default/settings.php file writeable for all users (-rw-rw-rw-, or 666 in Linux). Once
the install process is over, the file permissions can be changed back (-r--r--r--, or 444) for
security reasons. Your FTP client should allow you to do this in a straightforward manner
(in most cases, by right-clicking on the file and finding this feature among the options
offered in a dropdown list).

Creating the Database and User for the Drupal Installation
For security reasons, you want to create a new database user with full permissions over a single, new
database to which no other user has permissions. Your hosting panel will offer you one or more ways of
doing this. In order to run Drupal’s Installation Wizard, you should then have three pieces of information
handy:

The name of the new database

The name of the user with full privileges over this database

The user password

I used PhpMyAdmin, as described in Chapter 2: I headed straight for privileges, and clicked on the
‘‘Add a new User’’ link, then filled in the details and noted the three items of info (database name and
user, password) on a new sticky Tomboy note (use your own favorite sticky notes app), clicked on the
‘‘Create database with same name and grant all privileges’’ option, and clicked on the Go button.

Running the Drupal Install Wizard
Now for the fun part. Point your browser at the new installation URL, and you should see something
similar to Figure 10-1.

The fascinating ‘‘Choose language’’ option shows that you are in the presence of a truly modern piece of
software capable of being localized to an ever-increasing number of languages, and that the localization
process can take place right here and now in the installation process.

Even though you will be incorporating both localization (l10n) and internationalization (i18n) in this
mini-application, the main localization language will be English. So follow these steps:

1. Click ‘‘Install Drupal in English.’’ Behind the scenes, Drupal will attempt to create the direc-
tory ./sites/default/files, and in most hosting scenarios, it will be able to do so. Should that
not be the case, you will see a warning like that shown in Figure 10-2, and you will have to
create the directory manually and make sure Drupal can write to that directory, and then
click the ‘‘Try again’’ link at the bottom of the screen.

241

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-1

Figure 10-2

242

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

2. You are then taken to the Database Configuration page, where you should simply copy
in the three items of information you noted down when you created the database. See
Figure 10-3.

Figure 10-3

3. Click ‘‘Save and continue.’’ The next page is very convenient. First of all, the following warn-
ing is displayed:

All necessary changes to ./sites/default and ./sites/default/settings.php have been
made, so you should remove write permissions to them now in order to avoid
security risks.

4. After that, you are asked to fill in site-specific information. This information includes
a Site e-mail address, all the particulars for the administration account, and Time Zone
information. You also get an automatic enabling of Clean (SEO friendly) URLs together with
the comforting message: ‘‘Your server has been successfully tested to support this feature,’’
as well as the option of automatically enabling the Update Notifications feature, so that
you will be automatically notified when new releases are available for the Drupal core and
modules.

Of particular interest on this page is the very cool password validation Ajax widget, which
not only tells you if the repeated password matches, but also informs as to the relative
strength (low, medium, high) as well as how to achieve a strong rating. See Figure 10-4.

243

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-4

5. Click on the ‘‘Save and continue’’ button, and you are taken to the Drupal Installation Com-
plete page, where you can see that you have successfully passed through all stages: You’ve
chosen your localization language, you’ve verified requirements, you’ve set up the database,
you’ve installed and configured the site, and you can now visit its front page. If the Instal-
lation Wizard had trouble sending out a confirmation e-mail to the new Admin account,
you are so warned. After clicking on your new site link, you find yourself on the front page
already logged in as the Administration account user.

Step 2: Designing and Building the
Architecture

At this point, you can start with a bilingual site, both from the point of view of l10n and of i18n, and build
a functional foundation for the application you have in mind.

Let’s take a quick look at the functional scope and then map that to a domain model, including business
objects and Drupal modules.

Application Scope and Domain
In Chapter 1, you saw that before attempting to build any website, it is very important to follow a cer-
tain workflow. Mapping out the scope and domain will allow for the production of a very significant
amount of cheap (mental) development and will simplify the whole process, since that process concretely

244

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

comprises a series of implementation steps involving design and implementation. This is in opposition to
the expensive kind of development, which you need to avoid like the plague, because it involves doing
work and then throwing it away as a substitute for thinking and dialog, as well as building without a
plan and changing high-impact architectural components during or even after implementation.

A little scope and domain work clarifies things and simplifies development.

Figure 10-5 shows the scope and functionality of what is required for the mini-application.

Register

Login

OrderTranslation

DoTranslation

ListTranslations

TakeDeliveryOnTranslation
client

TranslatorTeamLeader

Translator

AssignTranslationToTranslator

Figure 10-5

Figure 10-6 shows the domain of classes and objects required to implement the mini-application, relating
these in general to Drupal modules.

Creating Roles and Users
The following best practices make things fall into place naturally as you go along. The roles are made
abundantly clear from the scope diagram (see Figure 10-5). And the fact that this can be prototyped right
into Drupal makes it all the more natural and exciting, since you are doing analysis and design together
with building, all in one go. The following roles are created with sample users:

Role User

Client client1
client2

Translator translator1
translator2

Translator Team Leader teamleader

245

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

TranslationStatusList

Translation

– translation_title : Text
– translation_client : User Reference
– translation_translator : User Reference
– translation_status : Text
– translation_due_date : Date
– translation_text : Text
– translation _language : String

User reference new in
Drupal 6.x, as a CCK
field and as a listable
type in Views

translator_application

user

profile

contact_form

contacttrigger

views
content_translation

date

client_application

cck

action

Figure 10-6

To create these roles, do the following:

1. Go to Administer � User management � Roles, and create the roles. The result should be
similar to Figure 10-7.

2. Go to Administer � User management � Users, and create the users. The result should be
similar to Figure 10-8.

Figure 10-7

246

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-8

Installing and Enabling Modules
As a result of our analysis and design (scoping the roles and user stories, abstracting out the domain),
the following modules should be installed:

Content Construction Kit

Date

Views

To do this, follow these steps:

1. Download all three modules and upload all the files, in their directories, via FTP to
./sites/all/modules.

2. Go to Administer � Site building �Modules, and enable the following modules:

Content (all modules)

Contact

Content Translation

Date (all modules except Date PHP4–unless necessary for your environment)

Locale

OpenID

PHP Filter

Profile

Trigger

247

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Upload

Views (all modules)

3. Go to Administer � User management � Permissions, and enable permissions as per the
following table:

Permission Client Translator Translator Team Leader

Access site-wide contact form x x x

Access content x x x

Create page content x

Delete own page content x

Edit any page content x

Edit own page content x

Search content x x x

Use advanced search x x x

Translate content x x x

Upload files x x x

View uploaded files x x x

Access user profiles x x x

Permissions in the node section will be set after the business objects are created (see below).

Making the Site Bilingual
Things are kept very simple and straightforward when you always bear in mind the user stories and the
domain. To implement the user stories concerning translations and the domain class Translation itself,
the website must be made fully bilingual.

Follow these steps:

1. Go to the Drupal translations download page (http://drupal.org/project/
Translations), and download the Spanish translation for Drupal 6.x, which you will
be using as an example, to your local machine. Unpack it into a convenient directory, and
then copy all the files right into the Drupal installation directory.

Prior to Drupal 6.x, individual language (.PO) files were imported into the selected lan-
guage one by one. With Drupal 6.x, a language copied with all its subdirectories (modules,
profiles, themes) into the Drupal installation directory can be made part of the Dru-
pal installation process, or added at any time, either as the default or as an alternative
language.

248

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

2. Go to Administer � Site configuration � Languages, and click on the ‘‘Add language’’ tab.
Select Spanish (Español) from the dropdown list, and click ‘‘Add language.’’ The language
translation files you have copied into the Drupal installation are automatically imported,
and the language is enabled. See Figure 10-9.

Figure 10-9

3. Now hit the Configure tab, select ‘‘Path prefix with language fallback’’ as the Language
Negotiation option, and click ‘‘Save settings.’’ With this option not equal to None and with
two or more languages enabled, you are now able to enable the Language switcher block
and make the site dynamically bilingual.

4. Go to Administer � Site building � Blocks, and enable the Language switcher block into the
Left sidebar region. Drag it to the top using the Drag to reorder ‘‘move’’ icon, then hit the
‘‘Save blocks’’ button at the foot of the page.

5. Go to the front page, and the result should be similar to Figure 10-10. Try clicking alterna-
tively on the English and Español links, and you will see the interface as well as the content
of the Drupal default welcome page appear in each language in turn.

6. There’s just one more thing to do, which is to enable multilingual support with translation
for all content types. Go to Administer � Content management � Content types, and edit
the Page content type. Scroll down to the Workflow settings section and open it, and select
Enabled, with translation option under Multilingual Support. Hit the ‘‘Save content type’’
button. Do the same for the Story content type.

The site is now bilingual.

249

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-10

To try it out, let’s make a bilingual static page as our Welcome page, viewable in both languages:

1. Log in as user teamleader.

2. Click ‘‘Create content,’’ and then click on the Page option. In the Title field, enter Welcome
to the Translation Studio! In the Body field, enter Now you can get your translations done
for the next business day! Just register, and upload a free trial translation. When it’s ready,
you’ll be notified by e-mail, then come in and access your work: it’s all ready for you!

3. In the Language field, select English instead of the default Language neutral. Then click on
the Save button. You will see the English version.

4. At this point, hit the Translation tab. As in Figure 10-11, you will see that there exists an
English version, but that no Spanish version is at yet available. Click on the ‘‘Add transla-
tion’’ link in the right-hand column.

Figure 10-11

250

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

5. The Title and Body fields have been filled in with the English versions. Replace them with
the following:

Field English Español

Title Welcome to the Translation Studio! Bienvenidos al Estudio de Traducciones!

Body Now you can get your translations
done for the next business day! Just
register, and upload a free trial
translation. When it’s ready, you’ll be
notified by e-mail, then come in and
access your work: it’s all ready for you!

Ahora puede tener tus traducciones listas
para el próximo dı́a laboral! Solo registrarse,
y subir una traducción de prueba gratis.
Cuando esté lista recibirá una notificación
por correo electrónico, entonces puede
visitar la página y acceder a su trabajo: está
todo listo para Ud.

The Language field is fixed as Spanish.

6. Click Save, and now there are two versions of the same page, one in English and one in Span-
ish. Try it: click Spanish in the Languages block, and you will see the Spanish version; click
English in the Idiomas block, and you will see the English version.

7. Go to Administer � Site configuration � Site information, and at the bottom of the page,
enter node/1 as the Default front page.

The site is bilingual, indeed (see Figures 10-12 and 10-13).

Figure 10-12

251

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-13

Step 3: Creating the Business Objects
Normally in Drupal, you click the ubiquitous user login block to either log in or register to become a new
user. Given the objectives here, however, you can do away with the regular user login/registration block
and configure Drupal so that only the Translator Team Leader can register users. Instead of registering
directly, Clients will fill out a Client Application form, Translators will fill out a Translator Application
form, and the Translator Team Leader will then manually create the users, assign them to the appropriate
roles, and send them notifications with login instructions. Of course, with the use of additional modules,
this process could be automated, but in this chapter, the aim is to provide an example based mainly on
the Drupal core.

You will need a total of three content types, the two kinds of applications with their corresponding fields,
and the translation content type itself.

To create the translation content type, do the following:

1. Go to Administer � Content management � Content types, and click on the ‘‘Add content
type’’ link.

2. Enter Translation in the Name field, and translation in the Type field. Enter Create a
multilingual text to be translated in the Description field. In the Submission form settings
section, leave the Body field label blank so as not to use the default Body field. In the Work-
flow settings, in Default options, check Published and Create new revision. In Multilingual
support, select Enabled, with translation. And leave Attachments Enabled. Click ‘‘Save
Content Type.’’

252

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

3. Click ‘‘Manage Fields,’’ and then the ‘‘Add a new field’’ link. The first field to be created is
the Client field because each translation will be uploaded by a Client. In Drupal 6, not only
is it possible to add a user reference without having to add a contributed module, other than
Content Construction Kit itself, but the user interface for adding and maintaining additional
fields has been greatly improved and streamlined compared to prior Drupal releases.

4. Enter translation_client in the Field name (the internal name will be field_translation_client),
and enter Client in the Label field. Use the dropdown list to select ‘‘User reference’’ for the
Field type, and click Continue. Immediately there appears an additional select list for the
Widget type, which you should set as Autocomplete Text field. Upon clicking Continue, only
then does the rest of the configuration appear. Near the bottom of the page, select Client as
the only User role that can be referenced, and click ‘‘Save field settings.’’

Also improved in the Manage fields tab of the content type is the ability to drag and drop
fields to indicate the ordering of fields in the form.

5. Now, let’s just add an advanced touch, if you like, to the Client field: a PHP-specified default
value. Because the Client is almost always going to be creating translations, it would be good
if the Client field had the Client’s own username already filled in by default automatically.
In order to do this, there being no option other than the specification of specific users, you
are obliged to use a few lines of Drupal-specific PHP. Click on the Configure link for the
field_translation_client field, and click on the ‘‘Default value’’ link; then enter the following
snippet into the PHP code text area:

global $user;
if ($user -> roles[3]) {

$uid = $user -> uid;
return array(
0 => array (’uid’ => $uid),

);
}
else {

return array();
}

If the user is of role Client, then the field is populated with the current user; otherwise, a null
default value is returned. Although this is perhaps not necessary, it is included for complete-
ness in order to show the high degree of flexibility of the Drupal content framework.

6. Create the rest of the fields according to the following table:

Field Label Machine-Readable
Name

Field Type Widget Configuration Required
Field

Title title (default) Yes

Client field_translation_
client

User
reference

Autocomplete
Text Field

Client role, default
value via PHP code
snippet provided in
this section.

Yes

Translator field_translation_
translator

User
reference

Autocomplete
Text Field

Translator role, no
default

No

253

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Field Label Machine-Readable
Name

Field Type Widget Configuration Required
Field

Status field_translation_
status

Text Select list New
Assigned
Completed
Needs work
Ready
(copy and paste
these values as is)

Yes

Due date field_translation_
due_date

Date Text Field with
jQuery pop-up
calendar

No

Text field_translation_
text

Text Text area
(multiple rows)

Plain text No

After you’ve dragged the fields into a logical order, the result should look something like
Figure 10-14.

Figure 10-14

7. One more task here is to set both content type-level permissions as well as, starting with
CCK version 2, available for Drupal 6 and later, the amazing feature of field-level permis-
sions, both for viewing and editing. Go to Administer � User management � Permissions,
and set the following permissions:

254

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Permission Client Translator Translator Team
Leader

content_permissions_module x x

Edit field_translation_client x x

Edit field_translation_date_due x x x

Edit field_translation_status x x x

Edit field_translation_text x x x

Edit field_translation_translator x x

View field_translation_client x x

View field_translation_date_due x x x

View field_translation_status x x x

View field_translation_text x x x

View field_translation_translator x x

Node module

Access content x x x

Administer nodes x

Create page content x

Create translation content x x x

Delete any translation content x

Delete own page content x

Delete own translation content x x x

Delete revisions x

Edit any page content x

Edit any translation content x x

Edit own page content x

Edit own translation content x x x

Revert revisions x x

View revisions x x

8. Now create the Client Application (client_application) content type, entering Expectations
and objectives in making use of the site as the Body field label. Configure by disabling
comments and attachments, enabling Published and Create new revision attributes, and
allowing Multilingual support (Enabled) in order to get an idea of language preferences.

255

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Grant full permissions to anonymous users on this content type, basing yourself on the fol-
lowing fields:

Field Label Machine-Readable
Name

Field Type Widget Configuration Required Field

Name title (default) Yes

Expectations and
objectives in making
use of the site

body

E-mail field_client_email Text Text field Yes

9. Finish up by creating the Translator Application (translator_application) content type, enter-
ing Reasons for applying for an account as Translator as Body field label. Again, config-
ure by disabling comments and attachments, enabling Published and Create new revision
attributes, and allowing Multilingual support (Enabled) in order to get an idea of language
preferences by virtue of which language the applicant actually uses. Add the following fields
(after doing so, don’t forget to grant full editing permissions on the content type and, indi-
vidually, each of these fields, in Administer � User management � Permissions):

Field Label Machine-Readable
Name

Field Type Widget Configuration Required Field

Name title (default) Yes

Reasons for
applying for an
account as
Translator

body

E-mail field_client_email Text Text field Yes

Step 4: Creating the Workflows
Now it is time to implement the rest of the user stories corresponding to the roles you have created. The
flow of interactions each of the users will be having with the website can best be modeled as workflows,
each of which will now be implemented in turn:

Registration workflow

The Client’s workflow

The Team Leader’s workflow

The Translator’s workflow

256

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Implementing the Registration Workflow
Translators and Clients will post applications, while Team Leaders will approve them and register Trans-
lators and Clients as new users.

1. Go to Administer � User management � User settings, and specify that only site adminis-
trators can create new user accounts. Click ‘‘Save configuration’’ at the bottom of the page.

2. Disable the User login/registration block entirely (don’t worry, it is always accessible at
http://example.com/user in case you get stuck without it).

3. Disable the block at Administer � Site building � Blocks by selecting <none> for the User
login block region and clicking ‘‘Save blocks.’’

4. Click on the configure link corresponding to the Navigation block, and enable it only for
the Translator Team Leader role. This will make for a cleaner and less confusing navigation
scheme, with most users not being confronted with a lot of options they don’t need, while
other more straightforward forms of navigation will be provided as each user role’s work-
flow is developed.

5. However, since this effectively removes the navigation block for User #1, it is a great time to
follow best practices and create an Admin role to which a new user dev is assigned, which
should be used for everyday administration and site configuration tasks. This role should
always have all permissions assigned, so permissions have to be revised each time a module
is installed and enabled or a new content type created.

This tedious task can be eliminated by installing the Admin Role module
(http://drupal.org/project/adminrole), ‘‘a little helper [module] to maintain an
administrator role which has full permissions.’’

6. In addition, let’s enhance the Translator Team Leader role to that of a nontechnical site
administrator so she can create and administer user accounts. Simply go to Administer �
User management � Permissions, and enable absolutely all permissions to that role except
for the more technical permissions (which will be confusing for her). The following table
outlines which permissions the Translator Team Leader should have:

Permission dev Translation Team Leader

Administer blocks x

Use PHP for block visibility x

Administer comments x x

Administer site-wide contact form x x

Use PHP input for field settings (dangerous — grant with care) x

Administer filters x

Administer languages x x

Translate interface x x

Administer menu x

257

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Permission dev Translation Team Leader

Administer content types x

Administer nodes x x

Administer search x x

Access administration pages x x

Access site reports x

Administer actions x

Administer files x

Administer site configuration x

Select different theme x

Administer taxonomy x x

Administer permissions x x

Administer users x x

Administer views x

Access all views x x

7. Now create several entries in the Primary Menu. To set up navigation option for the Client,
go to Administer � Site building �Menus, and then click ‘‘Primary links.’’ Set up the menu
items as shown in the following table:

Menu Link
Title

Description Path Weight

Register as a
client!

Register as a client to
start uploading
translations!

node/add/client-
application

0

Register as a
translator!

Register as a translator
to start work right
away!

node/add/translator-
application

2

My account Log in/access your
account

user 4

Logout logout 6

8. Now, to implement the registration workflow itself, you need to configure an e-mail to be
sent to the Team Leader user whenever a Client or Translator Application is created. Then

258

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

the Team Leader can read the application and, if she decides to honor it, register the person
as a new user on the site, with the appropriate role, and have that user notified in turn.

This can be implemented by taking advantage of Drupal’s built-in trigger and action duo,
which has already been enabled. Go to Administer � Site configuration � Actions, select
‘‘Send e-mail. . .’’ from the ‘‘Make a new advanced action available’’ dropdown list, and
hit Create. You are immediately taken to the ‘‘Configure an advanced action’’ page. Enter
Notify team leader of application by e-mail in the Description field. Provide an appropri-
ate e-mail address in the Recipient field (this will be a static e-mail, belonging to the Team
Leader user). Enter New Application in the Subject field, and in the Message field, enter the
following:

%title has sent a %node_type from %site_name .

Please visit %node_url .

%title wrote:

%body

and hit the Save button. Now head over to the Triggers page to establish conditions under
which the action should be invoked. Go to Administer � Site building � Triggers. From the
Trigger: ‘‘After saving a new post drop-down list, Choose an action,’’ select ‘‘Send e-mail’’
and hit Assign.

9. To complete the picture, you need to create a View and place it on the Team Leader menu so
that she can easily list the applications and act upon them when she logs in.

Go to Administer � Site building � Views, and click Add. Enter applications in the View
name field and List client and translator applications in the View description field. Enter
application in the View tag field (a cool way of grouping together all views having to do
with applications), and leave the default Node View type selected. Click Next.

10. Select the fields to be displayed. To add the first, click the + icon next to the Fields block. In
the Groups dropdown list, choose Node, select Node: Title, and click Add. The Configure
field ‘‘Node: Title’’ dialog appears.

11. Type Name in the Label field, and select the ‘‘Link this field to its node check box,’’ then click
Update. Select + again, select Node group, and then select Node: Type and Node: Post date,
and click Add. Click on the up and down arrows to rearrange the order of the fields, and
move the Post date field down into third position.

12. Click on the Save button to create the view. The info area announces, ‘‘The view has been
saved.’’

13. In the Basic Settings section, click Style, and in the work area below, select Table and hit
Update. Configure the table to have each field sortable, with Post date as the default sort.
Specify a Descending sort order, and hit Update again. Click on the Save button again.

14. Because you want this to be a list of applications, click the + icon in the Filter section. Choose
the Node group, select Node: Type, and hit Add. The Operator should be set to ‘‘Is one of,’’
and the Node type should have both Client Application and Translator Application checked.
Click Update, and then ‘‘Save the view.’’

259

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

15. You now need to add a Page display. Select Page and hit ‘‘Add display.’’ In the Page settings
section, click on the None link in order to edit the attribute labeled Path. In the work area that
opens up, type view/applications in the text field to complete the URL for the page, and hit
Update.

16. Click on the Save button.

17. Again, in the Page settings section, click on the ‘‘No menu’’ attribute of Menu. Select Normal
menu entry, and in the Title field that then appears, enter View applications. Click on the
‘‘Update and Save’’ button.

Now, when the Team Leader logs in, the View applications menu item appears in her navigation block,
as can be seen in Figure 10-15.

Figure 10-15

She can access John Doe’s application by clicking on ‘‘John Doe.’’ To actually create a user account
for this applicant (again, this is a process that can be automated, but that is beyond the scope of this
comprehensive but simple chapter example), the Team Leader may right-click ‘‘Administer’’ from the
teamleader menu on the left sidebar to open it in another browser window or to tab the Administration
pages menu, a stripped-down version of what dev sees, thanks to your configuration of her permis-
sions. (See Figure 10-16.) From there, she clicks ‘‘Users’’ in the User management group and is taken
to Administration � User management � Users. She clicks on the ‘‘Add user’’ tab and places the name
provided in the application form in the Username field, the contents of the E-mail field into the E-mail
address field, provides a password that the user can later change herself, checks the Client checkbox in

260

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

the Roles section, checks the ‘‘Notify user of new account’’ checkbox, and selects the same language that
the application has chosen (or leave in English by default).

Returning to the list of user accounts on the system at Administration � User management� Users, John
Doe is now listed as a user of role Client (Figure 10-15).

Figure 10-16

Implementing the Client’s Workflow
The Client’s workflow involves

Creating a text for translation.

Viewing all texts being translated and their status.

Accessing any translation for downloading.

Let’s use the primary menu not only for the Client’s and Translator’s registration requests, login and
logout, but also for the Client’s main navigation options once they are logged in.

So to set up the navigation option for the Client, follow these steps:

1. Go to Administer � Site building �Menus, and then click on the Primary links. You have
already added menu items to the primary menu.

261

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

2. Complete the setup as shown in the following table:

Menu Link
Title

Description Path Weight (or just drag into
appropriate position)

New
translation

Upload a new translation node/add/translation -6

Register as
a client!

Register as a client to start
uploading translations!

node/add/
client-application

0

Register as
a translator!

Register as a translator to
start work right away!

node/add/
translator-application

2

My account Log in/access your account user 4

Logout logout 6

3. Log in as Client John Doe, and create a couple of texts to be translated. Click ‘‘New Trans-
lation’’ at the top of the screen. Type in Translation One in the Title field. Click anywhere
within the ‘‘Date due’’ field to test the delights of the jQuery pop-up calendar, and enter a
due date 1 or 2 days later than the current date. Select English as the document language,
and enter any appropriate short text. Click on the Save button (remember that the Team
Leader will be automatically notified of this event by e-mail). You should see something like
Figure 10-17.

Figure 10-17

262

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Before you create Translation Two in the same way, it is really clear that a short help text is required, so
that the Client always chooses either Spanish or English, and that the kind of translation required, either
English to Spanish, or vice versa, is made clear. So:

1. Logged in as user dev (I use Firefox for my dev session and Konqueror or IE under wine
on Ubuntu for my other user sessions), go to Administer � Content management � Con-
tent types, and edit the Translation content type. Open up the Submission form settings, and
insert the following text into the Explanation or submission guidelines text area:

If submitting an English text for translation into Spanish, please indicate that by setting
the Language selector to English. On the other hand, Spanish texts to be translated into
English should have the Language selector set to Spanish.

Si está presentando un texto en inglés para su traducción al español, por favor que lo
indique mediante el seteo del indicador de Idioma a inglés. Por otro lado, los textos en
español que deben ser traducidos al idioma inglés deben tener su selector de idioma
puesto en español.

2. Now, logged in as Client user John Doe, hit ‘‘New translation,’’ and the form should look
like Figure 10-18.

Figure 10-18

263

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Complete Translation two.

3. Now, logged in as dev, you need to implement a table view allowing Clients to visualize
a list of their current translations, sorted by status and due date. Go to Administer � Site
building � Views, and click on the Add button. Enter the items in the appropriate fields as
shown in the following table:

For This Field Enter This Item

View name translations

View Description List translations sorted by status and due date

View tag translation

View type Node

4. Click Next. Select the following items as indicated in the following table:

For This
Item

Specify

Add fields Node: Title (Link this field to its node)
Content: Text: Status–field_translation_status
Content: Date: Date due–field_translation_date_due

Add filters Node: Type = Translation
Node: Language = Current user’s language
User: Current True

Basic
settings

Table style, making all fields Sortable, with Date due as Default sort, with
Default sort order as Descending

5. Click Update, and then click Save.

6. In Basic settings, select Distinct as Yes.

7. In Basic settings, specify Use pager as Full pager.

8. Add a Page display with Path as view/translations.

9. I exported the view so that you may import it as an alternative to going through all the above
steps by going to Administer � Site building � Views, hitting the Import tab, pasting in the
code, and hitting the Import button (yes, this is PHP code that can be placed in any module
to create the view on the fly):

$view = new view;
$view->name = ‘translations’;
$view->description = ‘List translations sorted by status and due date’;
$view->tag = ‘translation’;
$view->view_php = ‘’;
$view->base_table = ‘node’;
$view->is_cacheable = FALSE;
$view->api_version = 2;
$view->disabled = FALSE; /* Edit this to true to make a default view
disabled
initially */

264

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);
$handler->override_option(’fields’, array(

‘title’ => array(
‘label’ => ‘Title’,
‘link_to_node’ => 1,
‘exclude’ => 0,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘field_translation_status_value’ => array(
‘label’ => ‘’,
‘link_to_node’ => 0,
‘label_type’ => ‘widget’,
‘format’ => ‘default’,
‘multiple’ => array(

‘group’ => TRUE,
‘multiple_number’ => ‘’,
‘multiple_from’ => ‘’,
‘multiple_reversed’ => FALSE,

),
‘exclude’ => 0,
‘id’ => ‘field_translation_status_value’,
‘table’ => ‘node_data_field_translation_status’,
‘field’ => ‘field_translation_status_value’,
‘relationship’ => ‘none’,

),
‘field_translation_date_due_value’ => array(
‘label’ => ‘’,
‘link_to_node’ => 0,
‘label_type’ => ‘widget’,
‘format’ => ‘default’,
‘multiple’ => array(

‘group’ => TRUE,
‘multiple_number’ => ‘’,
‘multiple_from’ => ‘’,
‘multiple_reversed’ => FALSE,

),
‘exclude’ => 0,
‘id’ => ‘field_translation_date_due_value’,
‘table’ => ‘node_data_field_translation_date_due’,
‘field’ => ‘field_translation_date_due_value’,
‘relationship’ => ‘none’,

),
));
$handler->override_option(’filters’, array(

‘type’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘translation’ => ‘translation’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

265

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

),
‘id’ => ‘type’,
‘table’ => ‘node’,
‘field’ => ‘type’,
‘relationship’ => ‘none’,

),
‘language’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘***CURRENT_LANGUAGE***’ => ‘***CURRENT_LANGUAGE***’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘language’,
‘table’ => ‘node’,
‘field’ => ‘language’,
‘override’ => array(

‘button’ => ‘Override’,
),
‘relationship’ => ‘none’,

),
‘uid_current’ => array(
‘operator’ => ‘=’,
‘value’ => 1,
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘uid_current’,
‘table’ => ‘users’,
‘field’ => ‘uid_current’,
‘relationship’ => ‘none’,

),
));
$handler->override_option(’access’, array(

‘type’ => ‘none’,
‘role’ => array(),
‘perm’ => ‘’,

));
$handler->override_option(’use_pager’, ‘1’);
$handler->override_option(’distinct’, 1);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘grouping’ => ‘’,
‘override’ => 1,
‘sticky’ => 0,
‘order’ => ‘desc’,
‘columns’ => array(
‘title’ => ‘title’,
‘field_translation_status_value’ => ‘field_translation_status_value’,

266

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

‘field_translation_date_due_value’ =>
‘field_translation_date_due_value’,

),
‘info’ => array(
‘title’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
‘field_translation_status_value’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
‘field_translation_date_due_value’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
),
‘default’ => ‘field_translation_date_due_value’,

));
$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);
$handler->override_option(’path’, ‘view/translations’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));

10. Now go to Administer � Site building �Menus, and add the view you have just made to the
Primary menu, which ends up having six items:

Menu Link
Title

Description Path Weight(or just drag into
appropriate position)

New
translation

Upload a new translation node/add/
translation

-6

View
translations

View a list of all your
translations ordered by
date and status

view/translations -4

Register as a
client!

Register as a client to start
uploading translations!

node/add/client-
application

0

Register as a
translator!

Register as a translator to
start work right away!

node/add/
translator-application

2

My account Log in/access your
account

user 4

Logout logout 6

267

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

At this point, the Client user John Doe will be able to click View translations from the
primary menu and see a list of the translations, sortable by status and due date, as in
Figure 10-19.

Figure 10-19

Unfortunately, no work has yet been done on them; otherwise, he could click and download his
translation!

Implementing the Translator Team Leader’s Workflow
If you look at the scope diagram (Figure 5-8), you can see that the Team Leader is an extremely busy user,
since a link is drawn between that user and many of the user stories. In the steps that follow, these user
stories can be divided into two main categories, namely, having to manage registrations and having to
manage the translations themselves. This divides our implementation of the user stories into these two
parts.

Team Leader Registration Workflow
Let’s check this out in a bit more detail than we did above. Here are the steps:

Team Leader Registration Workflow Steps

User/System Action

Jane Doe Clicks Register as a Client.

The System Presents node/add/client-application.

Jane Doe Completes name and e-mail and clicks on Save button.

268

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Team Leader Registration Workflow Steps

User/System Action

The System Client application saved with Jane Doe’s data.
Mail sent to Team Leader using template specified in Administer � Site
configuration � Actions:
%title has sent a %node_type from %site_name .
Please visit %node_url .
%title wrote:
%body

The Team
Leader

Receives following e-mail:

‘‘Jane Doe has sent a Client Application from Translation Studio. Please visit
http://translationstudio.textworks.com.ar/node/8.
‘‘Jane Doe wrote: ‘Hope to be able to get my work done well. I’ve tried at least 25
other sites and they haven’t worked out, so I’m hoping yours is better.’’’

Visits /node/8 directly from the mail, or else accesses
site and finds her application from the View Appli-
cations list. Jane Doe’s application is reviewed.

In another browser tab or window visits Administer �
User management � Users and clicks on ‘‘Add user.’’

Specifies the username and e-mail provided in the client application,
specifies password, assigns new user to client role, selects the ‘‘Notify
user of new account’’ checkbox, and clicks ‘‘Create new account.’’

The System Creates new user Jane Doe. Sends her a welcoming e-mail notifying her of her
new account by checking the option ‘‘Notify user of new account.’’

Jane Doe Jane Doe receives the following mail:
‘‘Jane Doe,
‘‘A site administrator at Translation Studio has created an account for you. You
may now log in to http://translationstudio.textworks.com.ar/user using
the following username and password:
username: Jane Doe
password: janedoe33
‘‘You may also log in by clicking on this link or copying and pasting it in your
browser:
http://translationstudio.textworks.com.ar/user/reset/10/1219262189/
3add858ff4439d8f086460e1707539ca.
‘‘This is a one-time login, so it can be used only once. After logging in, you will
be redirected to http://translationstudio.textworks.com.ar/user/10/edit
so you can change your password.’’
— Translation Studio team

Jane Doe Logs in.

269

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Refer to Figure 10-20 to see Jane’s first login.

Figure 10-20

Not bad for an off-the-shelf Open Source and free CMS!

Team Leader’s Translation Workflow
But the beat goes on! Let’s now see the workflow that is followed as Jane uploads a text for translation,
and how the Team Leader will be notified and assign the work to a Translator.

Team Leader’s Translation Workflow Steps

User/System Action

Jane Doe Logs in.

Jane Doe Clicks ‘‘New translation.’’

The System Presents node/add/translation.

Jane Doe Completes Title, Language, Date due, Text fields, and clicks on the Save button.

The System Translation saved. Team Leader notified and sent link via e-mail.

270

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Team Leader’s Translation Workflow Steps

User/System Action

The Team
Leader

Team Leader receives following e-mail:
‘‘Chinese Women’s Hockey Team wins Semi-finals and has sent
a translation from Translation Studio. Please visit
http://translationstudio.textworks.com.ar/node/9."
Note: the template needs to be generalized, but it gets the job done for now.

The Team
Leader

Accesses the translation directly via the link in the mail.

The Team
Leader

Edits the translation and, because of permissions, sees more fields. Assigns
translation to translator1, sets Status to Assigned.

The interesting thing is to compare, given how you have configured the permissions, how the user Team
Leader sees the translation (Figure 10-21, showing the additional Team Leader menu block in the left
sidebar, plus access to more fields), as opposed to how the client sees it (Figure 10-22, showing access to
fewer fields and no navigation blocks).

Figure 10-21

271

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

Figure 10-22

Implementing the Translator’s Workflow
The Translator is also automagically notified of translations assigned to her, but via an RSS feed! To create
the required view, follow these steps:

1. Log in as dev, and go to Administer � Site building � Views. Click the Clone link associated
with the Translations view.

2. Enter translations_by_translator in the View name field, and click Next.

3. Click Save.

4. Remove the filter: User: Current True.

5. Click the + icon in the Arguments section.

6. Select Content: User reference: Translator (field_translation_translator). Configure to Dis-
play empty text if argument not present and if argument does not validate. Click Update,
and then click Save.

7. Select ‘‘existing Page display.’’ Change the Path to view/my-job-list. Click Update and then
Save.

8. Add a display of type feed! Change Style to Row. Specify ‘‘Attach to the Page display.’’ Spec-
ify the Path of view/my-job-list/feed. Click Save.

272

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

The result can be seen in Figure 10-23, complete with an orange RSS icon for the Translator to subscribe
to. And here is code for the view all ready to be imported:

$view = new view;
$view->name = ‘translations_by_translator’;
$view->description = ‘List translations sorted by status and due date’;
$view->tag = ‘translation’;
$view->view_php = ‘’;
$view->base_table = ‘node’;
$view->is_cacheable = FALSE;
$view->api_version = 2;
$view->disabled = FALSE; /* Edit this to true to make a default view disabled
initially */

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);
$handler->override_option(’fields’, array(

‘title’ => array(
‘label’ => ‘Title’,
‘link_to_node’ => 1,
‘exclude’ => 0,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘field_translation_status_value’ => array(
‘label’ => ‘’,
‘link_to_node’ => 0,
‘label_type’ => ‘widget’,
‘format’ => ‘default’,
‘multiple’ => array(

‘group’ => TRUE,
‘multiple_number’ => ‘’,
‘multiple_from’ => ‘’,
‘multiple_reversed’ => FALSE,

),
‘exclude’ => 0,
‘id’ => ‘field_translation_status_value’,
‘table’ => ‘node_data_field_translation_status’,
‘field’ => ‘field_translation_status_value’,
‘relationship’ => ‘none’,

),
‘field_translation_date_due_value’ => array(
‘label’ => ‘’,
‘link_to_node’ => 0,
‘label_type’ => ‘widget’,
‘format’ => ‘default’,
‘multiple’ => array(

‘group’ => TRUE,
‘multiple_number’ => ‘’,
‘multiple_from’ => ‘’,
‘multiple_reversed’ => FALSE,

),
‘exclude’ => 0,
‘id’ => ‘field_translation_date_due_value’,

273

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

‘table’ => ‘node_data_field_translation_date_due’,
‘field’ => ‘field_translation_date_due_value’,
‘relationship’ => ‘none’,

),
));
$handler->override_option(’arguments’, array(

‘field_translation_translator_uid’ => array(
‘default_action’ => ‘empty’,
‘style_plugin’ => ‘default_summary’,
‘style_options’ => array(),
‘wildcard’ => ‘all’,
‘wildcard_substitution’ => ‘All’,
‘title’ => ‘’,
‘default_argument_type’ => ‘fixed’,
‘default_argument’ => ‘’,
‘validate_type’ => ‘none’,
‘validate_fail’ => ‘empty’,
‘id’ => ‘field_translation_translator_uid’,
‘table’ => ‘node_data_field_translation_translator’,
‘field’ => ‘field_translation_translator_uid’,
‘relationship’ => ‘none’,
‘default_options_div_prefix’ => ‘’,
‘default_argument_user’ => 0,
‘default_argument_fixed’ => ‘’,
‘default_argument_php’ => ‘’,
‘validate_argument_node_type’ => array(

‘client_application’ => 0,
‘page’ => 0,
‘story’ => 0,
‘translation’ => 0,
‘translator_application’ => 0,

),
‘validate_argument_node_access’ => 0,
‘validate_argument_nid_type’ => ‘nid’,
‘validate_argument_vocabulary’ => array(),
‘validate_argument_type’ => ‘tid’,
‘validate_argument_php’ => ‘’,

),
));
$handler->override_option(’filters’, array(

‘type’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘translation’ => ‘translation’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘type’,
‘table’ => ‘node’,
‘field’ => ‘type’,
‘relationship’ => ‘none’,

),
‘language’ => array(

274

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

‘operator’ => ‘in’,
‘value’ => array(

‘***CURRENT_LANGUAGE***’ => ‘***CURRENT_LANGUAGE***’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘language’,
‘table’ => ‘node’,
‘field’ => ‘language’,
‘override’ => array(

‘button’ => ‘Override’,
),
‘relationship’ => ‘none’,

),
));
$handler->override_option(’access’, array(

‘type’ => ‘none’,
‘role’ => array(),
‘perm’ => ‘’,

));
$handler->override_option(’use_pager’, ‘1’);
$handler->override_option(’distinct’, 1);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘grouping’ => ‘’,
‘override’ => 1,
‘sticky’ => 0,
‘order’ => ‘desc’,
‘columns’ => array(
‘title’ => ‘title’,
‘field_translation_status_value’ => ‘field_translation_status_value’,
‘field_translation_date_due_value’ => ‘field_translation_date_due_value’,

),
‘info’ => array(
‘title’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
‘field_translation_status_value’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
‘field_translation_date_due_value’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
),
‘default’ => ‘field_translation_date_due_value’,

));
$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);
$handler->override_option(’path’, ‘view/my-job-list’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,

275

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler = $view->new_display(’feed’, ‘Feed’, ‘feed_1’);
$handler->override_option(’row_plugin’, ‘node_rss’);
$handler->override_option(’row_options’, array(

‘item_length’ => ‘default’,
));
$handler->override_option(’path’, ‘view/my-job-list/feed’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’displays’, array(

‘page_1’ => ‘page_1’,
‘default’ => 0,

));

Figure 10-23

But how will the Translator find his customized job list? Obviously, the Team Leader could mail the RSS
feed to each of them, or they could be told how to figure it out. But with just one extra touch, you can do
something a bit cooler. Let’s create a custom block only visible to Translators logging in or on the front
page, that provides them with a direct link to their translations job list. Follow these steps:

1. Go to Administer � Site building � Blocks, and click ‘‘Add block.’’ Type in Translators job
list in the Block description field, and leave the Title field blank. Open up the Input format

276

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

section, and select PHP code for the input format (not the most secure thing in the world, but
hey, just this once!).

2. In the Block body itself, insert the following exactly as it is here (no trailing spaces after the
?> closing tag):

<?php
global $user;
print ‘<h3>’ . t(’Hello’) . ‘, ‘ . $user -> name . ‘, click \
<a href="/view/my-job-list/’ \
. $user -> uid . ‘">’ . t(’here’) . ‘ ‘ . t(’to see job list’) .
‘</h3>’;
?>

3. Select the checkbox corresponding to Translator in the ‘‘Show block for specific roles’’
section. In the ‘‘Show block on specific pages’’ section, select ‘‘Show on only the listed
pages,’’ and list the following, each on a separate line:

<front>
node/1
node/2
user
user/*

The result can be seen in Figure 10-24.

Figure 10-24

277

Chapter 10: Installing and Using Drupal 6 Fresh out of the Box

The Translator can simply access the list, choose a translation to work on, and change its status to Ready
so that the Client knows the work can be downloaded.

Summary
In this chapter, you made a complete self-contained mini-application on a fresh install of Drupal 6.x.

In doing so, you got the chance to see some fine new functionality built right into this Drupal release,
including its convenient Ajaxified admin interface, its support for business objects modeling and for
more-flexible-than-ever query generation, as well as a fully localized and bilingual application frame-
work with off-the-shelf support for workflows.

In the next chapter, we’ll see where we are with the On-Line Literary Workshop and move forward on
that front.

278

Full Swing Agile Approach
to Drupal Development

This is actually the best part of the book, and the most representative of real-world work. Distracted
by upgrades and other wonderment and a lot of stuff going on, you need to get back on track and
bring the project to successful closure.

Now, at what stage is the project? How do you even know? Well, that’s the reason for the Agile
approach . . . a kind of Google Map of your project: Pan out for the big vision, zoom in to any area
of detail you can easily get your head wrapped around, and break off, just a single task to get done
and make another step forward. That way, you never get that jackrabbit-in-the-headlights paralysis
feeling as complexity overwhelms you and you don’t know which way to turn.

This may seem obvious, but it is the single most frequent cause of delays in website application
development, as complexity and contemplation and infinite choices rob your time and energy. With
Agile, it’s like spreading all the cards on the table, taking a moment to put them in order together
with the client, then using good old-fashioned worker discipline to reduce implementation to the
process. This process is like plucking a card, getting it done, showing it off, feeling good, and then
taking another card and another until it’s all done.

So this chapter is a road that’s going to lay itself, as you take a card, one at a time, and get it done.
To work through the chapter, take the code from Chapter 7, and work through all the activities that
follow below. As an alternative, you can simply download the tarball for this chapter and see the
functionality already working as you read through this chapter.

Now, it has been a few chapters since you were working with the On-Line Literary Workshop. To
get back in the driver’s seat, the best thing to do is to see which iterations are already done, then
run the Acceptance Tests (the confirmation section of each user story, and an associated full-blown
Acceptance Test for that user story if there is one) for all of the user stories in those iterations. Then
take the first user story not yet implemented . . . and do it.

Chapter 11: Full Swing Agile Approach to Drupal Development

To see a list of all user stories, log in as user dev, and then click on the groups’ primary menu link. This
is because the dev group (which the development and client users are members of) is unlisted in the
regular group directory. What you see in the dev group is simply the same thing you see at any group
page — the listing from what was left as the default group home page view, og_ghp_table. You need to
hone your project tools a smidgen to make them more useful (which, in this use case — that is, coming
home from Burning Man and getting back to work — can readily be seen as woefully inadequate, since
you need to hone your project tools so as to be able to quickly see what your progress has been and how
far you have come along in the implementation of user stories).

Honing the Project Tools
I can hear some of you asking, ‘‘What is the percentage of time you spend creating tools, as opposed
to the amount of time you spend actually getting any work done?’’ Ah, no, this is the nature of the
beast, or business! Always reserve a significant amount of time to fashion tools: This will make you
more productive very quickly and is part of the work itself. You should get used to this in the software
business.

Problem: You need to be able to list all user stories and sort them by
iteration.

Solution: Make a view to list user stories sortable and filterable by iteration, and make
it available on the dev group home page in a new menu block called project.

Problem: If you are in a user story and an Acceptance Test has been
written for that user story, you need to have a link that will take you

straight to the Acceptance Test.
Solution: Add an Acceptance Test node reference field to the User Story content type,
so you can see which ones are related and add additional fields to include additional
Acceptance Tests.

Adding an Acceptance Test Node
Let’s implement the second one first:

1. Go to Administration � Content management � Content types, and click on the Manage
Fields link corresponding to the user_story content type.

2. Click on the ‘‘Add field’’ tab, and enter user_story_acc_test in the Field name field,
Acceptance Tests in the Label field, and select ‘‘Node reference’’ from the Field type
dropdown list.

280

Chapter 11: Full Swing Agile Approach to Drupal Development

3. Click on the Continue button, select ‘‘Autocomplete text field’’ from the dropdown list in the
Widget type field, and click on the Continue button again. For the Number of values, select
Unlimited. ‘‘’Unlimited’ will provide an ‘Add more’ button so the users can add as many values as
they like.’’ Now, that is cool — and only available with Drupal 6 and later.

Previously, three fields were added, then you had to save the node, and another three fields
were added; this way you can add as many fields as you like in a single edit. The Acceptance
Test must already exist, of course. Indicate Acceptance Test as the only node type that can
be referenced, and click on the ‘‘Save field settings’’ button.

4. From the listing of fields in the ‘‘Manage fields’’ tab, drag the new field down into last place,
just after the Confirmation field, and click on the Save button.

5. Now, try it! From the list on the dev organic group home page, click ‘‘Clean URLs and
automatic generation of SEO friendly paths’’ user story (if the title field is not clickable, go
to Administer � Site building � Views, click on the title field, and specify that it should
link to the node). At the bottom, in the Acceptance Test field, type in clean, and the widget
will offer the already existing Acceptance Test ‘‘Test Clean URLs and automatic generation
of SEO friendly paths.’’ Click on what is offered. Save your work. Now when you view
the user story, you can navigate directly to the Acceptance Tests. And while viewing
any of the associated Acceptance Tests, you can navigate right back to the user story.
Awesome.

Make a View to List User Stories
Having solved the second problem, tackle the first (‘‘view user stories by iteration’’):

1. First of all, create a Taxonomy vocabulary of terms called Iteration. Add the names of the
iterations you were using in Trac: Prototype, Beta, Final release, and Launch.

2. Go to Administer � Content management � Taxonomy, and click on the ‘‘Add vocabulary’’
tab. Type in User Stories by Iteration for Vocabulary name, a suitable description field (‘‘An
iteration in the development process’’), and a suitable Help text (‘‘Please indicate which
iteration the user story has been allocated to in the project planning.’’).

3. Indicate ‘‘User Story’’ as the only content type this vocabulary will be used to categorize, and
click on the Save button.

4. Back at the listing of taxonomy vocabularies, click on the ‘‘Add terms’’ link for the newly cre-
ated vocabulary. Add the four terms, one after another (when you click on the Save button,
you are brought right back to the ‘‘Add term’’ Form).

5. One last cool thing: When you click ‘‘List terms,’’ you can drag Prototype to the top so that it
will be listed first, then click on the Save button.

6. Make another vocabulary called User Story Status, also applicable to the User Story content
type, containing the terms In progress, Test pass, and Test fail. Add another vocabulary,
called User Stories by Actor, listing all the actors. Of course, the actors may be implicit in the
title of the user story, but this way you can easily click the applied vocabulary term and
browse all the user stories related to that actor.

281

Chapter 11: Full Swing Agile Approach to Drupal Development

7. Edit each of the user stories according to the following table. But before you do, note that
if you only want to edit one or two, just to quickly put in the basic details, the form is very
big and you’ll feel as if you’ve bypassed the details (e.g., ‘‘Conversation,’’ ‘‘Confirmation,’’
‘‘Acceptance Tests’’). Don’t worry! You will be filling this information in later in order to get
to the Save button. It would be better to have a collapsible User Story Details group so that it
is quick and easy to add a user story that comes to your mind while you are developing.

Actor User Story Iteration Status

Workshop
Leader

Can approve applications to join the workshop.
Can suspend Members and Publishers.
Can manage affinity groups.
Can broadcast messages to Members.
Can do everything Workshop Members and Publishers
can do.

Prototype Test pass

Webmaster Clean URLs and automatic generation of SEO-friendly
paths.

Prototype Test pass

Workshop
Member

Can post literary pieces.
Can make any post public, private, or visible to an affinity
group.
Can critique public posts.
Can browse public pieces and critiques.
Can send and receive messages to and from all Members
and Publishers and the Workshop Leader.
Can create simplified navigation blocks for Workshop
Members.

Beta Test pass

Workshop
Member

Can start an affinity group with its own forums.
Can post to forums.
Can maintain his or her own literary blog.

Final Release

Publisher Can browse public content.
Can broadcast a call for pieces to be submitted for a
publication.
Can select content for inclusion in a publication.
Can manage an on-line publication.
Can manage an on-line blog.
Can do initial theming.

Final Release

Webmaster Can administer the website configuration.
Can install new updates and functionality.
Can prepare production server.
Can optimize production environment and carry out
deployment.
Can package web application as Drupal installation profile.

Launch

8. Go to Administer � Content management � Content types, and click on the ‘‘Add group’’
tab. Type in User Story Details in the Label field, and select Collapsed so that the fields in
this group will be collapsed by default.

282

Chapter 11: Full Swing Agile Approach to Drupal Development

9. Click Add. Now, drag the Conversation, Confirmation, and Acceptance Tests fields so that
they belong to the new group. This can be done the old way, by editing each field and man-
ually indicating the group the field belongs to, or by simply dragging them under the group
and leaving them slightly indented, as per Figure 11-1.

Figure 11-1

10. Make sure that all of the user stories in the previous table exist and that they are only acces-
sible to the dev audience by so indicating in the Audience field. This is internal dev business,
after all.

Making the User List Available
So, now you know where you are! Let’s leave the Launch iteration to later chapters, and go through the
implementation of the Final Release functionality in the rest of this chapter.

But you need to complete the solution to the first tooling problem, namely, ‘‘Make a view to list user
stories sortable and filterable by iteration, and make it available on the dev group home page in a new
menu block called project.’’ To do so, follow these steps:

1. Go to Administer � Site building � Views, and click Add. Enter user_stories in the View
name field, and List user stories sortable and filterable by iteration in the View description
field. Enter user stories in the View tag field (a cool way of grouping together all views
having to do with applications), and leave the default Node View type selected. Click
Next.

283

Chapter 11: Full Swing Agile Approach to Drupal Development

2. Select the fields to be displayed. To add the first, click on the + icon next to the Fields block.
In the Groups dropdown list, choose Node, select Node: Title, and click Add. The Configure
field ‘‘Node: Title’’ dialog appears.

3. Type Name in the Label field, and select the ‘‘Link this field to its node’’ checkbox, and then
click on the Update button. The Live Preview already shows all nodes in the system! Before
you filter the view, finish the fields list. Select + again, select the Taxonomy group, and select
Taxonomy: All terms and click Add. Type All attributes in the label field, select ‘‘Link this
field to its term page,’’ and click on the Update button. Select + again, but this time select
the Taxonomy group and then select Taxonomy Term. Type in Iteration for the label. Select
‘‘Link this field to its taxonomy term page,’’ and click on the Update button again. (Note that
it is not necessary to specify any vocabulary here since that is handled in the filters section;
see below.)

4. Click on the Save button to create the view. The info area announces ‘‘The view has been
saved.’’

5. In the Basic Settings section, to the right of the Style label, Unformatted is selected by
default. Click on the Unformatted link, and in the work area below, select Table, and click on
the Update button. Configure the table to have each field sortable, with Title as the default
sort. Specify an Ascending sort order, and click on the Update button again. Click on the
Save button again.

6. Click the + icon in the Filter section. Choose the Node group, select Node: Type, and click on
the Add button. The Operator should be set to ‘‘Is one of,’’ and the Node type should have
User Story checked. Click on the Update button and then the ‘‘Save the view’’ button.

7. Click on the + icon in the Filter section again. Choose the Taxonomy group, and select Tax-
onomy: Term ID. Click on the Add button. The extra settings configuration appears. Select
the ‘‘User Stories by Iteration’’ Vocabulary and the Dropdown selection type widget. Click
on the Update button.

8. In the filter configuration that appears next, select the operator ‘‘Is one of,’’ select all four
of the terms so that the list will initially include all User Stories, and click on the ‘‘Reduce
duplicates’’ checkbox. Click on the Update and then the Save buttons.

9. Click on the Taxonomy: Term ID filter link again, and now click on the Expose button so that
users can filter the view produced. Place Iteration in the label field, and click on the Update
and ‘‘Save the view’’ buttons.

10. Add another filter. This filter won’t be exposed, but rather a filter to avoid user stories being
shown once for one vocabulary and once for another: You need a filter to only include
queries associated with the ‘‘User Stories by Iteration vocabulary.’’ Click on the + icon in the
Filters section, and add a Taxonomy: Vocabulary filter set to only include ‘‘User Stories by
Iteration.’’ Save the view.

11. You now need to add a Page display. Select Page in the dropdown list on the left-hand
side, and then click on the ‘‘Add display’’ button. In the Page settings section, click on the
None link next to the Path attribute. Type view/user-stories in the text field, and click on
the Update button. Configure the Use pager attribute to Full pager, and click on ‘‘Update
default display’’ since any display will require a pager. Configure the Items per page to 20.

12. Click Save.

284

Chapter 11: Full Swing Agile Approach to Drupal Development

For your convenience, the following code can be used to directly import the view, assuming the content
types and taxonomies already exist and are configured as per the indications in this chapter:

view = new view;
$view->name = ‘user_stories’;
$view->description = ‘List user stories sortable and filterable by \
iteration, actor and status’;
$view->tag = ‘user stories’;
$view->view_php = ‘’;
$view->base_table = ‘node’;
$view->is_cacheable = FALSE;
$view->api_version = 2;
$view->disabled = FALSE; /* Edit this to true to make a default \
view disabled initially */

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);
$handler->override_option(’fields’, array(

‘title’ => array(
‘label’ => ‘Title’,
‘link_to_node’ => 1,
‘exclude’ => 0,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘name’ => array(
‘label’ => ‘Iteration’,
‘link_to_taxonomy’ => 1,
‘exclude’ => 0,
‘id’ => ‘name’,
‘table’ => ‘term_data’,
‘field’ => ‘name’,
‘relationship’ => ‘none’,

),
‘tid’ => array(
‘label’ => ‘All attributes’,
‘type’ => ‘separator’,
‘separator’ => ‘, ‘,
‘empty’ => ‘’,
‘link_to_taxonomy’ => 1,
‘limit’ => 0,
‘vids’ => array(

‘1’ => 0,
‘5’ => 0,
‘2’ => 0,
‘3’ => 0,
‘4’ => 0,
‘7’ => 0,

),
‘exclude’ => 0,
‘id’ => ‘tid’,
‘table’ => ‘term_node’,
‘field’ => ‘tid’,

285

Chapter 11: Full Swing Agile Approach to Drupal Development

‘override’ => array(
‘button’ => ‘Override’,

),
‘relationship’ => ‘none’,

),
));
$handler->override_option(’filters’, array(

‘type’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘user_story’ => ‘user_story’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘type’,
‘table’ => ‘node’,
‘field’ => ‘type’,
‘relationship’ => ‘none’,

),
‘tid’ => array(
‘operator’ => ‘or’,
‘value’ => array(),
‘group’ => ‘0’,
‘exposed’ => TRUE,
‘expose’ => array(

‘use_operator’ => 0,
‘operator’ => ‘tid_op’,
‘identifier’ => ‘tid’,
‘label’ => ‘Iteration’,
‘optional’ => 1,
‘single’ => 1,
‘remember’ => 0,
‘reduce’ => 0,

),
‘type’ => ‘select’,
‘vid’ => ‘4’,
‘id’ => ‘tid’,
‘table’ => ‘term_node’,
‘field’ => ‘tid’,
‘hierarchy’ => 0,
‘relationship’ => ‘none’,
‘reduce_duplicates’ => 1,

),
‘vid’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘4’ => 4,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,

286

Chapter 11: Full Swing Agile Approach to Drupal Development

‘expose’ => array(
‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘vid’,
‘table’ => ‘term_data’,
‘field’ => ‘vid’,
‘override’ => array(

‘button’ => ‘Override’,
),
‘relationship’ => ‘none’,

),
));
$handler->override_option(’access’, array(

‘type’ => ‘none’,
‘role’ => array(),
‘perm’ => ‘’,

));
$handler->override_option(’items_per_page’, 20);
$handler->override_option(’use_pager’, ‘1’);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘grouping’ => ‘’,
‘override’ => 1,
‘sticky’ => 0,
‘order’ => ‘asc’,
‘columns’ => array(
‘title’ => ‘title’,
‘name’ => ‘name’,

),
‘info’ => array(
‘title’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
‘name’ => array(

‘sortable’ => 1,
‘separator’ => ‘’,

),
),
‘default’ => ‘title’,

));
$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);
$handler->override_option(’path’, ‘view/user-stories’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));

287

Chapter 11: Full Swing Agile Approach to Drupal Development

Creating a Block Menu to Easily Access the New View
All that remains is to create the block menu project for admin and client (Workshop Leader) roles:

1. Go to Administer � Site building �Menus, and click on the ‘‘Add Menu’’ tab. Type in
project in the Menu name and Project in the Title fields, and Menu for accessing project
documentation in the Description field. Click Save.

2. Click on the ‘‘Add item’’ tab. Enter view/user-stories in the Path field and User stories in
the Menu link title field. In the Description field, enter List user stories sorted and filtered
by iteration, actor, and status. And click on the Save button.

3. Now head over to Administer� Site building � Blocks, and enable the newly created Project
block (whenever you create a menu in Drupal, a menu block is automatically created and
may be enabled in any region supported by the current theme) in the left sidebar region,
then drag it down to fourth place, just above Genre parade. Remember to click on the ‘‘Save
blocks’’ button at the bottom of the page in order for your changes to go into effect.

4. You now want to configure the block so that it is only visible to the Admin and Workshop
Leader roles. You do this by clicking on the configure link corresponding to the Project block
and selecting the checkboxes for these roles in the ‘‘Show block for specific roles’’ section.
Click on the ‘‘Save block’’ button.

Now you have a shiny new Project menu block in the left sidebar when you are logged in, say, as user
dev. Click on the User Stories link, and you should see the results of all our labor; the first problem has
now had its solution implemented. Figure 11-2 shows the page after the Final Release filter has been
applied.

Figure 11-2

288

Chapter 11: Full Swing Agile Approach to Drupal Development

Implementing the User Stories
After working through the last section, you can now take any user story not yet in progress (which is all
of them at this point) and implement it!

Such is the joy of keeping it simple when you use the Agile approach to software development: Since
you have already divided everything into bite-sized chunks and have distributed these into a planning
timeline, when you just take one, you only have to wrap your head around that while you’re implement-
ing it. So you can come back from Burning Man, log in as user dev, click on the User Stories link in the
Project block menu, orient yourself in terms of which iteration you are in, which user stories have been
implemented, take one, put your feet up with your laptop in your lap, and work on it:

Workshop Member: Starting an Affinity Group with Its Own
Forums

This user story is an ideal place to jump right in.

Click on this user story and edit it. Set the User Story status to ‘‘Test fail,’’ and click Save right away.
Now, if a clutch server is down and you get the call and spend an hour fixing that, when you come back
to your work here, you can see which user stories are in progress (Of course, if you prefer, you could just
add an In progress term to the User Story status taxonomy vocabulary . . . just because I am a natural
miser in terms of using resources doesn’t mean you have to be.)

Working with the Conversation and Confirmation Sections
Now, what you want to do here is think aloud in the Conversation section about how
you are going to implement this, so a record is kept of how the story was implemented.
A typical entry now in the Conversation section could be:

Conversation
A Workshop Member can start an affinity group with its own forums.

Group enable forums.

Enter this by editing the user story:

1. Click and open up the User Story Details section, and enter text in the first available Conver-
sation text area. Remember, if they are all filled up, you can click ‘‘Add another item’’ right
then and there thanks to Drupal and jQuery magic.

2. Now, use the Confirmation section to lay out raw material for a future Acceptance Test. Add
something like the following (explaining how forums can be enabled as visible only to a
given group):

Confirmation
User james logs in and decides to create a new group he wants to list in the groups
directory for Flash Fiction Enthusiasts. Once the group is created, user joyce logs in,

289

Chapter 11: Full Swing Agile Approach to Drupal Development

joins the group, and starts a group forum topic. User james logs in and leaves a com-
ment on joyce’s topic. But user gertrude, not a member of the Flash Fiction Enthusiasts
group, cannot access this forum topic, either from the group home page or from the
Flash Fiction forum itself.

3. Click the Save button.

Figure 11-3 shows the user story as you will see it after taking another distracting call.

Figure 11-3

4. The first part is simple: Go to Administer � User management � Permissions, and make
sure the Workshop Member role has been granted the following permissions in the Forum
Module section:

Module Permission

Node module Create group content.
Edit own group content.

Forum module Create forum topics.
Edit own forum topics

290

Chapter 11: Full Swing Agile Approach to Drupal Development

Making Options Appear in the Place Menu
Now (using another Firefox profile, or else another browser) log in as user james, a Workshop Member.
Looking at the Confirmation section for guidance after another phone call unsuccessfully trying to sell
me a well-known telecommunications gadget or car insurance, you can see that the first problem you are
going to come across is that even though james has permission to create a group, that option does not
appear in the Places menu. To make this happen, do the following:

1. Go to Administer � Site building �Menus, and click on the Places menu.

2. Click on the ‘‘Add item’’ tab, and enter node/add/group in the Path field, and Create your
own group in the Menu link title. Click Save. Now you can see all the menu items — go
ahead and reorder them according to your own preferences by dragging them up and down.

3. Now, the new option appears in user james’ menu. Logged in as user james, click on the
‘‘Create your own group’’ link. Enter Flash Fiction Enthusiasts in the Title field and Join
us for flash fiction fun in the description field, which will appear in the group details block
as well as in the group directory. Add a mission statement.

4. In the Membership Requests section, although you could choose Moderated so that mem-
bership requests would have to be approved, choose Open so that membership requests are
accepted immediately. Select the List in the groups directory checkbox, and click Save.

Adding a Forum Topic
Upon running the Confirmation Test, you get a ‘‘fail’’: User joyce can join the group, but when he accesses
the group home page, the corresponding group block does not include an option to create a forum topic
that can optionally only be accessed by Flash Fiction Enthusiasts.

To remedy this problem, do the following:

1. Log in as user dev (or access the browser that is logged in as that user, if you are using the
recommended method of having two sessions open in different browsers simultaneously),
and go to Administer � Content management � Content types, and edit the Forum topic
content type.

2. Open up the Organic groups section, and select the Standard group post (typically only the
author may edit). No e-mail notification option. Click on the ‘‘Save content type’’ button.

3. Before running the Confirmation Test, as dev go to Administer � Content management �
Forums, and click on the ‘‘Add forum’’ tab. Type in Flash Fiction in the Forum name field,
choose Literary Forms as the parent, and click Save.

4. Now run the Confirmation Test again.

User joyce logs in (supposing he is not yet a member of the Flash Fiction Enthusiasts group). He clicks
on the Groups primary menu option and sees the Flash Fiction Enthusiasts group listed in the groups
directory, then clicks the Join link. Upon being asked, ‘‘Are you sure you want to join the group?’’ he
clicks on the Join button and is told in the info area just above the content region: ‘‘You are now a member
of the Flash Fiction Enthusiasts.’’ The user clicks the group home page link (Flash Fiction Enthusiasts)
and sees that so far there have been no posts in this group. He sees the Flash Fiction Enthusiasts block
menu at the top of the left sidebar and sees that he has the option of creating a forum topic or a literary
piece as an internal post of the group, only accessible by members. He clicks on ‘‘Create forum topic,’’

291

Chapter 11: Full Swing Agile Approach to Drupal Development

types in What is flash fiction really? in the Subject field, selects Flash Fiction from the Forums dropdown
list, and types in a suitable text in the Body textarea field. He leaves the Audience checkbox for Flash
Fiction Enthusiasts selected and hits Save. Then user joyce logs out.

User james logs in, clicks on the My Groups link in the Groups menu block in the left sidebar, then elects
to visit the Flash Fiction Enthusiasts group. He sees that joyce has posted ‘‘What is flash fiction really?’’
and clicks the link to access it. He finds himself in the Flash Fiction Forum and reads the forum topic. He
leaves a comment.

Well, this time, the Confirmation Test passes!

One question, however: What happens if a Workshop Member who is not a member of the group accesses
the group page or this forum topic? The answer is that newly created user gertrude, assigned a role of
Workshop Member, logs in, clicks Groups, clicks on the Flash Fiction Enthusiasts group home page link
in the group directory, and sees the group mission statement, but is told:

‘‘No public posts in this group. Consider joining this group in order to view its posts.’’

Awesome. As user dev, go in and edit the user story Confirmation section to include
this as part of the test:

Confirmation
User james logs in and decides to create a new group he wants to list in the groups
directory for flash fiction enthusiasts. Once the group is created, user joyce logs in, joins
the group, and starts a group forum topic. User james logs in and leaves a comment on
joyce’s topic.

Mark the User Story status as ‘‘Test pass’’ and click Save.

Now click on the User Stories link in the Project menu block in the left sidebar, filter for our current
iteration — select Final Release and click on the Apply button — and take another user story to
implement.

A Publisher Can Browse Public Content
This is the next user story on the pile of cards.

From the User Story Details section:

Conversation
Enable the Places menu block for publishers.

Modify the browse/genre view to include the genre taxonomy term as an exposed
filter.

292

Chapter 11: Full Swing Agile Approach to Drupal Development

Enabling the Places Menu Block
To enable the places menu block for publishers also (they will only see the links for which they are
granted permission), do the following:

1. Go to Administer � Content management � Blocks, and click on the Configure link for the
Places block. Select the checkbox corresponding to the Publisher role in the ‘‘Show block for
specific roles’’ section, and click on the ‘‘Save block’’ button.

2. To complete the ‘‘Browse literary pieces according to genre’’ view so that it performs as
advertised, go to Administer � Content management � Views, and click on the Edit link
corresponding to the view genre_browser.

3. Click on the + icon in the header of the Filters section, and in the work area, select Taxonomy
from the dropdown list. Select the checkbox next to the Taxonomy: Term ID option. Click on
the Add button. The work area now asks you to select the Vocabulary that the taxonomy
term should belong to, as well as the selection widget type.

4. Select Tags and Dropdown, and click on the Update button. Now the work area asks you to
confirm the Operator (‘‘Is one of’’), the terms (do not select any), and offers an Expose but-
ton. Click the Expose button, enter Genre in the Label field, then click on the Update button,
and finally click Save.

The exported code for the new version of genre_browser, which you can conveniently import if you prefer,
is as follows:

$view = new view;
$view->name = ‘genre_browser’;
$view->description = ‘’;
$view->tag = ‘’;
$view->view_php = ‘’;
$view->base_table = ‘node’;
$view->is_cacheable = FALSE;
$view->api_version = 2;
$view->disabled = FALSE; /* Edit this to true to make a default \
view disabled initially */

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);
$handler->override_option(’fields’, array(

‘title’ => array(
‘label’ => ‘Name’,
‘link_to_node’ => 1,
‘exclude’ => 0,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘name’ => array(
‘label’ => ‘Genre’,
‘link_to_taxonomy’ => 0,
‘exclude’ => 0,
‘id’ => ‘name’,
‘table’ => ‘term_data’,
‘field’ => ‘name’,

293

Chapter 11: Full Swing Agile Approach to Drupal Development

‘relationship’ => ‘none’,
),
‘name_1’ => array(
‘id’ => ‘name_1’,
‘table’ => ‘users’,
‘field’ => ‘name’,
‘label’ => ‘Author’,

),
‘changed’ => array(
‘id’ => ‘changed’,
‘table’ => ‘node’,
‘field’ => ‘changed’,
‘label’ => ‘Date’,

),
));
$handler->override_option(’filters’, array(

‘type’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘literary_piece’ => ‘literary_piece’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘type’,
‘table’ => ‘node’,
‘field’ => ‘type’,
‘relationship’ => ‘none’,

),
‘title’ => array(
‘operator’ => ‘contains’,
‘value’ => ‘’,
‘group’ => ‘0’,
‘exposed’ => 1,
‘expose’ => array(

‘use_operator’ => 0,
‘operator’ => ‘’,
‘identifier’ => ‘filter0’,
‘label’ => ‘Name’,
‘optional’ => 1,
‘remember’ => 0,

),
‘case’ => 1,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘vid’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘2’ => 2,

294

Chapter 11: Full Swing Agile Approach to Drupal Development

),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => ‘vid_op’,
‘label’ => ‘Genre’,
‘use_operator’ => 0,
‘identifier’ => ‘vid’,
‘optional’ => 1,
‘single’ => 1,
‘remember’ => 0,
‘reduce’ => 0,

),
‘id’ => ‘vid’,
‘table’ => ‘term_data’,
‘field’ => ‘vid’,
‘relationship’ => ‘none’,

),
‘uid’ => array(
‘id’ => ‘uid’,
‘table’ => ‘users’,
‘field’ => ‘uid’,
‘exposed’ => 1,
‘expose’ => array(

‘identifier’ => ‘filter2’,
‘label’ => ‘Author’,
‘operator’ => ‘’,
‘optional’ => ‘1’,
‘single’ => ‘0’,

),
),
‘tid_1’ => array(
‘operator’ => ‘or’,
‘value’ => array(),
‘group’ => ‘0’,
‘exposed’ => TRUE,
‘expose’ => array(

‘use_operator’ => 0,
‘operator’ => ‘tid_1_op’,
‘identifier’ => ‘tid_1’,
‘label’ => ‘Genre’,
‘optional’ => 1,
‘single’ => 1,
‘remember’ => 0,
‘reduce’ => 0,

),
‘type’ => ‘select’,
‘vid’ => ‘2’,
‘id’ => ‘tid_1’,
‘table’ => ‘term_node’,
‘field’ => ‘tid’,
‘hierarchy’ => 0,
‘relationship’ => ‘none’,
‘reduce_duplicates’ => 0,
‘override’ => array(

295

Chapter 11: Full Swing Agile Approach to Drupal Development

‘button’ => ‘Override’,
),

),
));
$handler->override_option(’access’, array(

‘type’ => ‘none’,
‘role’ => array(),
‘perm’ => ‘’,

));
$handler->override_option(’title’, ‘Browse literary pieces according to genre’);
$handler->override_option(’header_format’, ‘1’);
$handler->override_option(’footer_format’, ‘1’);
$handler->override_option(’empty_format’, ‘1’);
$handler->override_option(’items_per_page’, ‘20’);
$handler->override_option(’use_pager’, TRUE);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘columns’ => array(),
‘default’ => ‘’,
‘info’ => array(
‘title’ => array(

‘sortable’ => TRUE,
),
‘name_1’ => array(

‘sortable’ => TRUE,
),
‘changed’ => array(

‘sortable’ => TRUE,
),

),
‘override’ => FALSE,
‘order’ => ‘asc’,

));
$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);
$handler->override_option(’path’, ‘browse/genre’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler = $view->new_display(’block’, ‘Block’, ‘block_1’);
$handler->override_option(’title’, ‘Browse Literary Pieces’);
$handler->override_option(’header_format’, ‘1’);
$handler->override_option(’footer_format’, ‘1’);
$handler->override_option(’empty_format’, ‘1’);
$handler->override_option(’items_per_page’, ‘5’);
$handler->override_option(’use_pager’, TRUE);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘columns’ => array(),

296

Chapter 11: Full Swing Agile Approach to Drupal Development

‘default’ => ‘’,
‘info’ => array(),
‘override’ => FALSE,
‘order’ => ‘asc’,

));
$handler->override_option(’block_description’, ‘Genre browser’);

Figure 11-4 shows that the publisher alfred logged in and after having clicked the ‘‘Browse by genre’’
link in his Places block menu, applied the Genre filter of Haiku.

Figure 11-4

It is now time to execute the confirmation test.

Confirmation
User alfred logs in and can browse public literary pieces by genre, author, and title
from his Places menu block, or else in sequential form via the paged listing at the foot
of the page, or finally via the Genre parade tag cloud.

Since this is now fully implemented, you can now set the User Story status to ‘‘Test pass.’’

297

Chapter 11: Full Swing Agile Approach to Drupal Development

5. Browse User Stories from the Project menu block again, and take another card from the pile.

A Publisher Can Select Content for Inclusion in a
Publication

From the User Stories section of the user story:

Conversation
Grant the Publisher Role permission to add content to books, to administer book out-
lines, and to create new books, because the content type book is only being used for
publications.

Confirmation
It is assumed that a Publication already exists, and that the User Story ‘‘A publisher
can browse public content’’ has already been implemented. User alfred logs in, clicks
on the ‘‘Browse by genre’’ link, and applies the Flash Fiction genre filter. He clicks any
of the pieces and then after viewing the piece, clicks on the Outline tab. He chooses a
book in the Book outline section and then a precise point of inclusion in the hierarchy
of that book in the Parent item field. He clicks on ‘‘Update book outline,’’ then clicks
on the Publications primary menu item. The selected Publication, when chosen, should
show the piece as part of the publication at the point of inclusion.

Run the Confirmation Test and set the User Story status to ‘‘Test pass.’’

You are now ready for the next user story.

A Publisher Can Manage a Publication
The Conversation section of this user story is quite straightforward about the basis for
the implementation of this user story.

Conversation
During the implementation in the section ‘‘Publisher can select content for inclusion
in a publication,’’ the Publisher role is granted permission to add content to books, to
administer book outlines, and to create new books, because the content type book is
only being used for publications.

Place node/add/book on the Places menu under the menu title ‘‘Create publication
pages.’’ A publication page might be a brand-new publication by virtue of being a
Parent node, or else a new book page might be created and attached to an existing
Publication (book hierarchy) on the fly.

298

Chapter 11: Full Swing Agile Approach to Drupal Development

You should be able to implement all of this via the administration interface. For permissions, you go
to Administer � User management � Permissions as usual, while menus (and hence menu blocks) are
managed via Administer � Site building �Menus. Figure 11-5 shows the Places menu configured in the
corresponding Administration page.

Figure 11-5

As usual, the requirements themselves are better documented in the Confirmation section.

Confirmation
It is assumed that the user story in the section ‘‘Publisher: Selecting Content for Publi-
cation Inclusion’’ has been implemented. It is assumed that the Flash Fiction genre tag
and some example literary pieces of this kind have been posted on the site.

User alfred logs in and decides to create a new publication called Flash Fiction Roundup.
He creates a book page from his Places block menu, and in the Book outline section
selects the <create a new book> option. Then, as a child page of this parent book page
corresponding to the new publication, he creates an issue of the magazine as a child
page. The publication automatically appears in the Publications list.

Continued

299

Chapter 11: Full Swing Agile Approach to Drupal Development

User alfred then browses content and makes use of the Outline tab found on all liter-
ary pieces content items to assign some pieces to the new issue book page of his new
publication.

Only the Publisher role should have access to this functionality, Workshop Members,
for example, do not.

To implement this user story, follow these steps:

1. Log in as gertrude, and create three literary pieces with Flash Fiction placed into the Tags
field.

2. Log in as alfred. Click the Create publication pages link, and enter Flash Fiction Roundup
in the Title field. Type This is a monthly roundup of flash fiction work among workshop
members here at the on-line literary workshop in the Body field. Select <create a new
book> in the Book outline section. Click Save.

3. Click on the ‘‘Add child page’’ link, and type in Autumn 2008. The new publication is imme-
diately listed when he clicks on the Publications primary menu item (by virtue of being the
designated top-level page of the book hierarchy).

4. Click on the ‘‘Browse by genre’’ link, and apply a genre filter for Flash Fiction. Figure 11-6
shows the kind of results you should see on your site.

Figure 11-6

300

Chapter 11: Full Swing Agile Approach to Drupal Development

5. Click your equivalent of a literary title, like ‘‘Drowning while buttoning my coat,’’ and just
below the title you will see two tabs: View and Outline, as a result of alfred having been
granted the role of Publisher. Click on the Outline tab, and choose Flash Fiction Roundup
as the book this literary piece will form a part of. Immediately, jQuery goodness opens up
a section asking you to specify the immediate parent item within that book’s hierarchy.
Choose Autumn2008. Repeat this process with the other two Flash Fiction literary pieces.

Now, click on the Publications primary menu item. ‘‘Flash Fiction Roundup’’ appears in
the list. Click it, and then the ‘‘Autumn 2008’’ issue link. The result should look similar to
Figure 11-7.

Figure 11-7

6. Complete the Confirmation Test by ensuring that a Workshop Member can see neither ‘‘Cre-
ate publication pages’’ in their Places menu block, nor the Outline tab when they browse
public content.

7. Set the User Story status of this user story to ‘‘Test pass,’’ and take another card allocated to
the Final Release iteration.

A Publisher Can Broadcast a Call for Pieces to be
Submitted for a Publication

From the section: ‘‘User Story Details.’’

301

Chapter 11: Full Swing Agile Approach to Drupal Development

Conversation
Enable the private message module, and grant the appropriate permissions.

Again, the requirements are understandable and mainly accessible as well in the testing
documentation.

Confirmation
User alfred sends a message to several Workshop Members he has had his eye on,
asking them to answer with material for the magazine. They are notified of the message
when they log in and may access it.

To accomplish this, do the following:

1. Go to Administer � Site building �Modules, and make sure the Private messages module is
enabled.

2. Go to Administer � User management � Permissions, and make sure the permissions in the
following table are granted in the privatemsg module section:

Permission Admin Publisher Workshop Leader Workshop Member

Administer privatemsg settings X X

Create new folder X X X X

Read all private messages X

Read privatemsg X X X X

Write privatemsg X X X X

3. Visit Administer � Site building � Blocks, and enable the Privatemsg links block to appear
just under the Places menu block.

User alfred logs in and clicks ‘‘My Account’’ in the Places menu block. A Send Message link has appeared
on his profile page, just below ‘‘View recent blog entries.’’ alfred clicks on the ‘‘Send Message’’ link, fills
in the list of Workshop Members he wishes to invite to contribute content for his publication in the ‘‘To’’
field, and types in a suitable message in the Message field. Figure 11-8 shows the ‘‘Send message’’ page.

alfred clicks on the Send button and is told:

‘‘Private message has been sent to gertrude, james, joyce.’’

302

Chapter 11: Full Swing Agile Approach to Drupal Development

Figure 11-8

Log in as james, and you will find that a new Messages block has appeared just below Places. james clicks
on the ‘‘Inbox (1 new)’’ link and sees that he has a message from alfred. He clicks on the Message Subject
link, is told that the message is between several Workshop Members, and reads the message.

Well, the Confirmation Test has already been passed, so user dev can set the User Story status to ‘‘Test
pass.’’

Initial Theming
In Chapter 7, the theming chapter, you learned a lot about the guts and nuts and bolts of Drupal theming,
but you may have been surprised or even disappointed by the simplistic and rather ugly appearance of
the On-Line Literary Workshop at the end of that chapter.

Implementing the ‘‘Initial theming’’ User Story will give you a chance to beautify your application, using
what you have already learned as well as presenting a couple of new tweaks.

From the section ‘‘User Story Details.’’

Conversation
Select and download a theme from oswd.org, and carry out an initial implementation
of it on the basis of the currently implemented Zen subtheme.

303

Chapter 11: Full Swing Agile Approach to Drupal Development

This is just the initial theming, so our requirements aren’t excessively stringent.

Confirmation
The overall aesthetic appearance corresponds in terms of layout, color scheme, and
typography to the original downloaded XHTML/CSS theme.

After working with Chapter 7, you undoubtedly have acquired the foundation to become an expert
Drupal themer. The time has certainly arrived to shed the rustic wireframe. The OSWD (Open
Source Web Design, ‘‘a site to download free web design templates and share yours with others,’’
can be found at www.oswd.org/) theme to be implemented in this chapter is ‘‘A Bit of Pastel’’
(www.oswd.org/design/preview/id/2744), and it will be used as a basis only, because its CSS includes
and confuses many layout and style issues already dealt with admirably by the Zen theme itself. What
you really want to extract from the theme is the logo, layout, and block and region theming ideas; the
color scheme; and, of course, the typography.

Unpack the theme into a working directory, and simply invoke index.html with a browser, as seen in
Figure 11-9.

Figure 11-9

304

Chapter 11: Full Swing Agile Approach to Drupal Development

Analyzing the theme components, you can see that it is comprised of an index.html file that contains the
layout and all content, semantic and otherwise, along with a style sheet (design.css) and three images in
a subdirectory. Of the three images, one is the header background, one is a kind of ‘‘cloud’’ logo, and
the third is used for the shadow border effect. Of course, whereas the On-Line Literary Workshop uses
a liquid layout, this theme has a fixed-width blog-like layout, so you won’t be able to take advantage of
this third image since it is hard-coded to a fixed-width layout.

Getting the Header in Place
Your current subtheme is to be found at ./sites/all/themes/zen/zenlitworkshop. Copy the clouds.jpg
and left2.jpg files into the main theme directory, where the Drupal logo logo.png is currently located.

The best thing is to have the background image occupy all of the #header div. But the image is designed
for a fixed-width layout, so one thing you can do is to take a vertical sliver with the gradient and have it
repeat horizontally, forgoing the left-hand design.

On Ubuntu the author used Gimp to select a vertical sliver of the left2.jpg file only 10 pixels wide con-
taining just the image gradient (), and then did Image/Crop to the selection from the menu. You can save
a file like this in PNG format, in the theme directory, and name it header-back.png.

In zenlitworkshop.css, the main style sheet for our Zen subtheme, change the #header definition to the
following (ca. line 46):

#header
{
height: 150px;
background: transparent url(header-back.png) repeat-x;

}

The result should be similar to that seen in Figure 11-10.

Figure 11-10

305

Chapter 11: Full Swing Agile Approach to Drupal Development

Now to position and color the site name and move the logo to the right side and replace our old friend
the druplicon (Drupal icon) with clouds.jpg: Inspecting the druplicon with the Firebug Firefox plug-in
inspires the following changes, which can be seen in Figure 11-11 (seen later in the chapter).

Invert the Printing of div#site-name and div#logo in page.tpl.php
By editing page.tpl.php, you can affect the way each and every page gets rendered, in this case, the site
name and logo.

Before:

<?php if ($logo): ?>
<div id="logo"><a href="<?php print $base_path; ?>" title="<?php

print t(’Home’); ?>" rel="home"><img src="<?php print\
$logo; ?>" alt="<?php print t(’Home’); ?>" id="logo-image"\
/></div>

<?php endif; ?>
<?php if ($site_name): ?>

<?php
// Use an H1 only on the homepage
$tag = $is_front ? ‘h1’ : ‘div’;

?>
<<?php print $tag; ?> id=’site-name’>
<a href="<?php print $base_path; ?>" title="<?php print \

t(’Home’); ?>" rel="home">
<?php print $site_name; ?>

</<?php print $tag; ?>>

<?php endif; ?>

After:

<?php if ($site_name): ?>
<?php
// Use an H1 only on the homepage
$tag = $is_front ? ‘h1’ : ‘div’;

?>
<<?php print $tag; ?> id=’site-name’>
<a href="<?php print $base_path; ?>" title="<?php print \

t(’Home’); ?>" rel="home">
<?php print $site_name; ?>

</<?php print $tag; ?>>

<?php endif; ?>
<?php if ($logo): ?>

<div id="logo"><a href="<?php print $base_path; ?>" title="<?php
print t(’Home’); ?>" rel="home"><img src="<?php print \
$logo; ?>" alt="<?php print t(’Home’); ?>" id="logo-image" /></div>

<?php endif; ?>

306

Chapter 11: Full Swing Agile Approach to Drupal Development

CSS Layout and Styling Changes
Now that you have successfully placed the elements, a few more styling tweaks are necessary:

1. Change the padding of div#site-name, in layout.css, and modify h1#site-name.

Before:

h1#site-name, div#site-name
{

margin: 0;
font-size: 2em;
line-height: 1.3em;

}

After:

h1#site-name, div#site-name
{

margin: 0;
padding .5em 0 0 .5em;
font-size: 2em;
line-height: 1.3em;

}

2. Change the color of #site-name a, in zenlitworkshop.css, about line 72.

Before:

#site-name a:link,
#site-name a:visited
{

color: #000;
text-decoration: none;

}

After:

#site-name a:link,
#site-name a:visited
{

color: #fff;
text-decoration: none;

}

307

Chapter 11: Full Swing Agile Approach to Drupal Development

3. Modify div#logo in about line 94 of layout.css.

Before:

#logo
{

margin: 0 10px 0 0;
padding: 0;
float: left;

}

After:

#logo
{

margin: -45px 0 0 0;
padding: 0;
float: right;

}

4. Modify the div#skip-to-nav link

Before:

#skip-to-nav
{

float: right;
margin: 0 !important;
font-size: 0.8em;

}

#skip-to-nav a:link, #skip-to-nav a:visited
{

color: #fff; /* Same as background color of page */
}

After:

#skip-to-nav
{

float: right;
margin: -15px 0 0 0 !important;
font-size: 0.8em;

}

#skip-to-nav a:link, #skip-to-nav a:visited
{

color: transparent; /* Same as background color of page */
}

Configure Logo to Point to clouds.jpg
In order to accomplish this, go to Administration � Site building � Themes, and configure the logo to
not be the default, but to point to clouds.jpg.

308

Chapter 11: Full Swing Agile Approach to Drupal Development

Results So Far
In this section, you are going to carry out more styling tweaks, by editing the main style sheet for your
theme, zenlitworkshop.css. Figure 11-11 shows the look and feel achieved up till now.

Figure 11-11

Now just a few more touches before you finish with the header: ‘‘white snapshot border on left and right
of clouds image, plus background outside div#page as per original.’’ To do so, follow these steps:

1. First of all, make the body background color light gray in zenlitworkshop.css:

body
{
background-color: #eee;

}

2. Create the white border around the header elements, in layout.css:

#header
{
border-left: 5px solid #fff;

}

...

309

Chapter 11: Full Swing Agile Approach to Drupal Development

#logo
{
margin: -45px 0 0 0;
padding: 0;
float: right;
border-left: 5px solid #fff;
border-right: 5px solid #fff;

}

3. The result can be seen in Figure 11-12.

Figure 11-12

Theming the Primary Menu
Oops, there are no primary menus in the OSWD theme. Well, let’s take the header typography and color
scheme as a cue. Make the following modifications in zenlitworkshop.css:

#navbar
{
margin-top: .5em;

}

#primary li {
background: #fff;
border: 1px solid #ccc;

}

#primary li a{
padding-left: 1em;
text-decoration: none;
color: #00103e;

}

#primary li a:hover{
text-decoration: underline;

}

The result can be seen in Figure 11-13.

310

Chapter 11: Full Swing Agile Approach to Drupal Development

Figure 11-13

Theming the Quotations Block and the Left Sidebar Regions
You can theme the quotations block and the left sidebar regions by continuing to edit the principal Theme
style sheet, zenlitworkshop.css. Sometimes you want to override the default styling of the Zen theme
itself, by copying over portions from the Zen style sheets and modifying them, as seen in these steps:

1. Make the background color for the quotations block the same as the Header Two block in the
original.

#content-top /* Wrapper for any blocks placed in the "content top"
region */

{
background-color: #dbe4ff;
margin-left: 2px;
border:1px solid #d1c2ff;

}

2. Theme the sidebar like the original:

#sidebar-left
{
width: 190px;
margin-left: 5px;
margin-top: 5px;
background-color: #f0ebff;
border:1px solid #d1c2ff;

}

311

Chapter 11: Full Swing Agile Approach to Drupal Development

#sidebar-left-inner
{
font-size: 80%;

}

3. To theme the links, copy to zenlitworkshop.css the links section from the parent Zen theme
htmlentities.css file, which are empty, then add a generic anchor tag element and fill in
attributes from the original OSWD theme.

/** links **/
/* The order of link states are based on Eric Meyer’s article:
* http://meyerweb.com/eric/thoughts/2007/06/11/who-ordered-the-

link-states
*/

/* VK: added this in to prevent having to repeat generic elements */
a {
text-decoration: none;
color: #666;

}

a:link
{
}

a:visited
{
}

a:hover,
a:focus
{
color: #900;

}

a:active
{
}

4. Now, in zenlitworkshop.css, theme the block and title headers like the Lorem Ipsum block
header in the original sidebar:

h1.title, /* The title of the page */
h2.title, /* Block title or the title of a piece of content when it \

is given in a list of content */
h3.title /* Comment title */
{
margin: 0;
color: #001d8f;

}

The results of these steps can be seen in Figure 11-14.

312

Chapter 11: Full Swing Agile Approach to Drupal Development

Figure 11-14

Theme the Main Content Area
Now it is time to turn your attention to the look and feel of the main content area, also by editing zenlit-
workshop.css.

1. To base the main content area theming on the original, modify zenlitworkshop.css as fol-
lows:

#content-area /* Wrapper for the actual page content */
{
background-color: #f5f7ff;
border: 1px solid #dbe2ff;
font-size: 90%;

}

2. And in the same file, theme #content-bottom the same as #content-top:

#content-top /* Wrapper for any blocks placed in the "content top"
region */

{
background-color: #dbe4ff;
margin-left: 2px;

border:1px solid #d1c2ff;
}

#content-bottom /* Wrapper for any blocks placed in the "content \
bottom" region */

{
background-color: #dbe4ff;
margin-left: 2px;

border:1px solid #d1c2ff;
}

The result can be seen in Figure 11-15.

313

Chapter 11: Full Swing Agile Approach to Drupal Development

Figure 11-15

Well, perhaps the On-Line Literary Workshop theme will win no prizes for its theme, but it does serve as
an example of what can be done relatively easily in terms of migrating toward ‘‘non-Drupal’’ themes.

Theme the Footer
In order to change the Footer, you can edit the ‘‘semantic content,’’ that is, the words, images, and links
that are going to appear in that region. You can then style that content by editing zenlitworkshop.css.

1. Go to Administer � Site configuration � Site information, and remove the rather amateurish
Footer message:

Powered by<img src="/misc
/favicon.ico" \
alt="Drupal rocks!" title="Drupal rocks!" />Drupal

2. Now, let’s enable the Powered by Drupal block in the content-bottom region at Administer
� Site building � Blocks.

3. Then, go to Administer � Site building �Menus, and create the Footer links (footer-links)
menu. For now, just add Theme based on BIT OF PASTEL from OSWD, pointing to
http://oswd.org.

4. Go back to the blocks administration page and enable the new menu, also in the
content-bottom region.

314

Chapter 11: Full Swing Agile Approach to Drupal Development

Right now, there is a problem because the footer you have created looks like Figure 11-16.

Figure 11-16

You need to remove the block title entirely, theme the listed menu like the primary menu, and float the
Powered by Drupal element in-line with it.

At Administer � Site building � Blocks, click on the Configure link corresponding to the Footer links
menu block. Enter <none> in the Block title field, and click on the ‘‘Save block’’ button. Then, make the
following modifications and additions to zenlitworkshop.css:

#content-bottom /* Wrapper for any blocks placed in the "content \
bottom" region */

{
background-color: #dbe4ff;
margin-left: 2px;

border:1px solid #d1c2ff;
font-size: 90%;

}

#content-bottom ul li
{
display: inline;
list-style-type: none;
padding: 0 0.5em;
margin

}

div#block-views-genre_browser-block_1 {
}

div#block-menu-menu-footer-links {
float: left;

}
div#block-menu-menu-footer-links ul {
margin: 1em 0 0 4em;
padding: 0;
font-size: 90%;

}

div#block-menu-menu-footer-links ul li {
background: #eee;
border: 1px solid #ccc;

}

div#block-system-0 {

315

Chapter 11: Full Swing Agile Approach to Drupal Development

margin-top: .8em;
margin-right: 200px;
float: right;

}

div#block-system-0 .content {
background: #eee;
border: 1px solid #ccc;

}

The results can be seen in Figure 11-17.

Figure 11-17

And you’re done with the initial theming user story. Of course, there are many things that could be
optimized, enhanced, and added, but certainly you have an initial theming for the final release and can
mark the User Story status as ‘‘Test pass.’’

On-Line Blog Functionality
In this section, you will enable basic blog functionality, then add in ‘‘service links’’ (Digg, Technorati,
etc.) for each post, add an author information block, as well as a block showing the most recent posts,

316

Chapter 11: Full Swing Agile Approach to Drupal Development

and a blogroll block. In so doing, you will see that while Wordpress (http://wordpress.org/) may be a
great choice as a blog platform per se, with Drupal you can have the same functionality without giving
up any of the tremendous flexibility and power of a full-blown CMS framework. This does require a little
effort. The work required is outlined, as usual, in the corresponding user stories.

The Card, Conversation, and Confirmation sections of the user stories concerning blog functionality are
identical for the Publisher and Workshop Member roles.

Card
A user can manage his or her own blog.

Conversation
Enable the core Drupal blog module and grant permissions to the user. Access to the
blog posting link should be included in the Places menu block. Pathauto should be
configured so as to create an SEO-friendly URL for the user’s individual blog. On the
right-hand side (sidebar), there should be an author info, a blogroll, and a recent posts
block for the blog. Enable the service links module.

Confirmation
User can log in and immediately post to his or her own blog. Users’ posts are imme-
diately published to the site blog River of News, and also to his or her own individual
blog (which has the general features associated with blogs — author info, blogroll,
recent posts), which has a unique URL that the user can publish. Service links should
be present.

You can find these in the following user stories included in the Drupal website you can download for
this chapter:

A Publisher can manage an on-line blog.

Workshop Members can maintain their own literary blogs.

Running the Confirmation Test for the Publisher User Story, at this point alfred can log in and click
the ‘‘Post a blog entry’’ item in the Places menu block. When alfred posts a blog entry, it can be
found in the general Blogs primary menu item River of News for all blogs, as well as in alfred’s
own individual blog. [The URL can be found in the ‘‘View recent blog entries’’ link on the user’s
profile page, accessible via the My Account link in the Places menu. This URL is SEO-friendly
(http://litworkshop.victorkane/blogs/alfred).]

Lacking are the three blocks to be found in the right sidebar when individual blogs are accessed.

317

Chapter 11: Full Swing Agile Approach to Drupal Development

Implementing Service Links
The Service Links module allows you to add Digg, del.icio.us, reddit, Technorati, and similar links to
nodes. Download and install it from http://drupal.org/project/service_links.

Next, do the following:

1. Enable the module at Administer � Site building �Modules.

2. Grant the Access Service Links permission to all roles, and the Administer Service Links
permission to roles Admin and Webmaster by visiting Administer � User management �
Permissions.

3. Configure the module at Administer � Site configuration � Service links. Select the check-
box next to ‘‘Blog entry’’ in the ‘‘Node types’’ section. Select whichever bookmark links
(Digg, Facebook, etc.) and search links (Technorati) you wish. Select Teasers and full-page
view in the Service links in the Nodes dropdown list. Select Image and text links in the Ser-
vice links Style dropdown list. And click on the ‘‘Save configuration’’ button.

Figure 11-18 shows the service links at this stage of development when viewing the Publisher alfred’s
own blog.

Figure 11-18

318

Chapter 11: Full Swing Agile Approach to Drupal Development

Implementing the Author Info Block for Individual Blogs
Carry out the following steps in order to implement the ‘‘Author Info Block,’’ so common on many blogs.

1. Logged in as user dev, go to Administer � Site building �Modules, and enable the core
Drupal Profile module.

2. Go to Administer � User management� Profiles, and study up on how to add custom fields
and tabbed categories of fields to the user profile. In order to comply with the Confirmation
Test of the current user story, in the ‘‘Add new field’’ section click ‘‘single-line textfield,’’ and
enter Author into the Category field. Enter Name in the Title field and profile_author_name
in the Form name field. In the Explanation field, type Enter your name as it will appear in
the Author Info block. Click on the ‘‘Save field’’ button.

3. In the ‘‘Add new field’’ section, click ‘‘multi-line textfield,’’ and enter Author into the Cat-
egory field. Enter Blurb in the Title field and profile_author_blurb in the Form name field.
Enter Give us a little blurb about yourself, as it will appear in the Author Info block.

Figure 11-19 shows Administer � User management � Profiles after these two fields have
been configured.

Figure 11-19

4. Log in as alfred and go to My Account. Click on the Edit tab. Because you specified Author
as the category for both fields, an Author tab is now automatically configured and appears

319

Chapter 11: Full Swing Agile Approach to Drupal Development

next to the Account tab (where you can edit username, password, etc.) when a user edits
his or her account. To try this out, click on ‘‘author’’ and enter a name, for example, Alfred
Knowles, and a short bio, and then click Save. When alfred returns to My Account, there is
now an Author section.

5. Now for the ‘‘Drupal is awesome’’ moment. Go to Administer � Site building � Blocks, and
enable the . . . Author information block! Assign it to the right sidebar region, and click on
the ‘‘Save blocks’’ button. Now click the Configure link for this block, enter <none> in the
Block title field, and select all three items in the ‘‘Profile fields to display’’ section. In the
‘‘Show blocks for specific roles’’ section, select Publisher, Workshop Leader, and Workshop
Member. In the ‘‘Page-specific visibility settings’’ section, select the ‘‘Show on only the listed
pages’’ option, and type in:

blog/*
blogs/*
blogs/*/*

each on a separate line. Click on the ‘‘Save block’’ button. Make sure it is at the top of the
right sidebar items.

6. Go to Administer � User management � Permissions, and enable the ‘‘access user profiles
permission for all users.’’

Figure 11-20 shows this feature in the case of the URL /blog/james/james-first-entry.

Implementing Recent Posts Block
The Recent Blog Posts block comes with Drupal off the shelf. Simply enable it in the same way as you did
the Author Information block.

Implementing the Blogroll
The Blogroll is best implemented using the Drupal Link module, which allows you to create a con-
tent type field of type link, say, in a Blogroll content type, so that a view can easily be made with a
block display entitled Blogroll, listing the URL portions of each blogroll content item, to create a classic
blogroll.

The link module may be downloaded from http://drupal.org/project/link.

After testing and making sure everything works, you can now set the User Story status for the blog
functionality user stories for the Final Release iteration to ‘‘Test pass.’’

The remaining user story for the current iteration, ‘‘A Workshop Member can post to forums,’’ is directly
supported by standard Drupal functionality also, as we have seen. Awesome!

320

Chapter 11: Full Swing Agile Approach to Drupal Development

Figure 11-20

Summary
In this chapter, you first honed your project tools, and then you were able to list all your user stories and
sort them by iteration, and were able to link user stories and Acceptance Tests. You were then quickly
able to find out where you were on the project on a Monday bleary morning by listing and filtering the
user stories according to the current iteration.

You then followed a wild adventure implementing and testing each and every one of them in order to
complete the Final Version iteration. Amazingly enough, in this chapter alone, that included the possi-
bility of Workshop Members creating and managing their own affinity groups on the fly, as well as a
complete framework for Publishers to easily browse and filter literary pieces in order to assemble and
publish individual issues of their own on-line publications. It also included the possibility of broadcasting
private messages to Workshop Members and inviting them to contribute material.

321

Chapter 11: Full Swing Agile Approach to Drupal Development

You then adapted the wireframe theme you have been using for quite a while now to an Open Source
freely available template downloaded from the Open Source Web Development website. As a result,
the On-Line Literary Workshop now looks decidedly spiffy, not at all identifiable right off the bat as a
‘‘Drupal’’ site.

And as if that were small potatoes, you finished off the chapter setting up a complete self-contained
blogging framework so that Workshop Members and Leaders, as well as Publishers, can have their own
blogs, publishable with an SEO-friendly URL and complete with typical blog-like Author Information,
Blogroll, and Recent Posts blocks.

In the remaining chapters of this book, you will learn how to complete deployment, learn about what
future releases of Drupal will have to offer, and review options to base your development on commercial
service-supported distributions of Drupal.

322

The jQuery Chapter

After Katherine Bailey’s excellent series of articles (see ‘‘The Lowdown on jQuery in Drupal’’:
http://raincitystudios.com/blogs-and-pods/katherine-bailey/the-lowdown-jquery-
drupal), there is certainly less mystery in the Drupal world concerning the use of the JavaScript
library, which (in its own words) ‘‘is a fast, concise, JavaScript Library that simplifies how
you traverse HTML documents, handle events, perform animations, and add Ajax interactions
to your web pages’’ (see ‘‘jQuery: The Write Less, Do More, JavaScript Library’’ home page:
http://jquery.com/). And articles such as Katherine’s certainly illuminate any AHAH problems
developers tend to encounter.

But, what is Ajax? And what is AHAH? How do you wrap your head around the whole Rich Inter-
net Application framework question? Also, why did Drupal chose jQuery over other extremely
serious contenders? And what can rich internet middleware do for an application like the On-Line
Literary Workshop?

Anatomy of a Rich Internet Application
Framework

In this section, you will first be introduced to the basics of what are known as Rich Internet Appli-
cations, something that has emerged as a way of giving the same sturdiness and quick response to
Internet applications as that enjoyed by desktop applications, thanks to a lot of progress in the use
of JavaScript in web browsers. You will be introduced to the Document Object Model (DOM) as a
way of accessing all browser objects, and will learn how to access the DOM both with CSS and with
JavaScript.

The Basics
Ajax (see www.riaspot.com/articles/entry/What-is-Ajax-) basically exploits an object
found in most browsers called XMLHttpRequest (a.k.a. XHR), which allows the browser to
carry out an HTTP request to the server without refreshing the page. Using JavaScript, the data

Chapter 12: The jQuery Chapter

returned by the server (which may have nothing to do with XML) may be parsed and then used
to modify a DOM element (see www.w3.org/TR/DOM-Level-2-Core/introduction.html) in the
served page, also without refreshing the page. This makes a web application behave much more
like a regular desktop application, and this is referred to as RIA: Rich Internet Application.

Now, when the data is taken as it is received from the server and plunked into a DOM element
(using innerHTML read/write DOM element access, again, supported by major browsers), that is
called AHAH: Asynchronous HTML and HTTP. The main thing is that the response from the server
cannot be XML or anything other than pure text or valid XHTML or HTML.

This sounds simple but is not so simple, because it involves multiple processes running on multiple
hosts in constant communication. This book has already discussed the serving of static and dynamic
pages, and understood them. Figure 12-1 shows this in the context of the serving of a static HTML
page from the filesystem in the server.

Server

Server File System

HTTP Server

Script interpreters

Graphics rendering

DOM

XHTML Rendering engine

User laptop or workstation

Browser

Composed of an HTTP
header and a Mime
message

HTTP Response

HTTP Request

Static Page

Figure 12-1

Looking at it very simply, the browser sends an HTTP request to the server, like http://litworkshop.
lit/cool-haikus/haiku-red.htm; the HTTP server searches for haiku-red.htm in the
cool-haikus subdirectory just off the document root; and if it is found, its contents are read and
sent back to the browser using the HTTP protocol, with a header and a MIME message so the
browser knows what to do with it. The page is rendered — a DOM is instantiated in a browser
window and displayed.

With Drupal, the architecture is just a tad more complicated, as you saw in Chapter 7 when Drupal
theming was dealt with. Instead of having to draw all the content from files having different MIME
types in the server filesystem, the HTTP server talks to Drupal, and Drupal talks to a relational
database (MySQL, Postgres, Oracle, etc.) or maybe even to a Web Service or a computer storage

324

Chapter 12: The jQuery Chapter

cloud like Amazon S3, and assembles the XHTML page complete with optionally compressed asso-
ciated CSS style sheets and JS scripts. Then all of that is handed over to the HTTP server, which
hands it off to the browser making the request, which sees it as if it were a static HTML page.

The reason a lot of stuff like Ajax, AHAH, and JavaScript libraries like jQuery seem so difficult for
website developers to get started with is because people tend to lose the notion of where it lives,
between the HTTP server, the MySQL database, the PHP code, and browser window, with all kinds
of code executing inside different components and servers at the same time. So Figure 12-2 shows
the architectural basis, in terms of components, of how a typical Drupal page is rendered: The
request is received by the Apache HTTP server process, which figures out via the URL that ‘‘this is
a job for Drupal.’’ Drupal is booted, and also on the basis of the URL asks the MySQL process for
a bunch of data, and in a separate process that was described in Chapter 7, the page is marshaled
in its various layers as a stream of bytes sent to the browser, which takes the HTML and goes from
there in order to make things happen in the browser window.

Server

Server File System

Relational DBMS

HTTP Server

Script interpreters

Graphics rendering

DOM

XHTML Rendering engine

User laptop or workstation

Browser

Composed of an HTTP
header and a Mime
message

HTTP Response

HTTP Request

Dynamic Page

Figure 12-2

So what are the accessible components of a fully rendered page, and how can you get at them?

Getting at the DOM with CSS
One way you can get at them is via CSS (Cascading Style Sheets). You have already seen how in
the last chapter, you were able to theme the footer in many ways. How was it possible to get at the
elements of the page to do the styling? The following snippet was used:

#content-bottom /* Wrapper for any blocks placed in the "content bottom" region
*/
{

325

Chapter 12: The jQuery Chapter

background-color: #dbe4ff;
margin-left: 2px;
border:1px solid #d1c2ff;
font-size: 90%;
}

The browser takes the HTML, generates and instantiates the DOM, then applies this snippet to
specify the background color, the border, font size, and left margin for the entire content bottom
region. That is, it selects an object within the Document Object Model, then applies certain attributes
of this object.

You can see this clearly using the DOM inspector in the Firefox browser, which ‘‘inspects the struc-
ture and properties of a window and its contents.’’ Go to the home page of the On-Line Literary
Workshop and invoke the DOM inspector from the Tools menu (install the Add-on if not present,
from https://addons.mozilla.org/en-US/firefox/addon/1806). Now, do what CSS (and as you
shall soon see, jQuery also) does: find the content bottom element. Figure 12-3 shows the DOM
inspector with the #content-bottom selected.

Figure 12-3

326

Chapter 12: The jQuery Chapter

It is interesting to see the entire hierarchy. And you can find out much more than you could possibly
want to know by selecting different values from the dropdown list at the top right, currently set to
Object–DOM Node, including the Style Rules and the Computed Style (the end result of all styles
on this object).

So, this is the end result of the style sheets being applied to the object hierarchy making up the
document when a page is served. But what happens, for example, if you want to alter any object’s
attributes (their value) on the fly, without re-serving the page, and in response to an event of some
kind, such as the user clicking or moving his or her mouse over an object? Answer: you can do it
with JavaScript!

Getting at the DOM with JavaScript
With JavaScript you can:

Access any DOM element and the value of its properties.

Modify the appearance of an already rendered page by modifying the value of any ele-
ment’s properties.

Change the DOM structure itself by adding or eliminating elements, and modifying the
content of an already rendered page and not simply its appearance.

Enable actions to be carried out in response to events that may occur, such as what a user
does upon interacting with the page.

Animate objects with special effects and even movements.

Use Ajax and AHAH operations to dynamically modify the content of the page via
requests to a server, without having to refresh the page.

So where does JavaScript live? Answer: in the browser. It is downloaded as a script by having been
included in a SCRIPT tag, just as a CSS style sheet when it is included in a LINK tag, or an image
when it is referenced in an IMG tag. Then, at different moments, it is interpreted and executed in the
browser’s memory space. That is important to bear in mind.

So let’s see a simple example of pure JavaScript that modifies the DOM after the page has been
rendered.

1. Go to Create content�Create page, type in JavaScript example one, and set the Body input
format to Full HTML.

2. Enter the following in the Body field:

<div id="section1">
<p>Haikus</p>
</div>
<div>
<ul id="section2">

327

Chapter 12: The jQuery Chapter

option 1
option 2

</div>
<div>
<a href="/texts/joyce/elegy-tired-lakes" id="section3" title="click to \
read" name="click to read">Elegy to the tired lakes

</div>

The result can be seen in Figure 12-4.

Figure 12-4

3. Now, let’s add in some JavaScript to alter the DOM after it has been rendered. Edit the
content/javascript-example-one page content item as follows:

<script type="text/javascript">
function alterDiv() {

var section1 = document.getElementById("section1");
section1.innerHTML = "<h2>Some Haikus</h2>";
var section2 = document.getElementById("section2");
section2.innerHTML = "Haiku RedHaiku \

BlueHaiku Green";
var section3 = document.getElementById("section3");
section3.innerHTML = "<img

src=’/sites/all/themes/zen/zenlitworkshop/clouds.jpg’ \
alt=’clouds’ />";

}
</script>
<body onload="alterDiv();">
<div id="section1">
<p>Haikus</p>
</div>
<div>
<ul id="section2">
option 1
option 2

</div>
<div>
<a href="/texts/joyce/elegy-tired-lakes" id="section3" title= \
"click to read" name="click to read">Elegy to the tired lakes
</div>

328

Chapter 12: The jQuery Chapter

First you add the JavaScript code between the <script>...</script> tags. The alterDiv() func-
tion is defined. Three variables — section1, section2, and section3 — are declared, and they are
assigned the DOM element having the same id attribute. Notice that the DOM element is located via
the document.getElementById() function. Then the ‘‘unofficial’’ (but present in all major browsers)
innerHTML DOM element attribute is assigned some valid XHTML, effectively modifying it on the
fly. This is achieved by assigning to the DOM element body’s onload attribute an invocation of
the alterDiv() function invocation. This is extremely important, since the onload event will only
be triggered and the alterDiv() function executed after the page is fully loaded; otherwise, the
JavaScript would not work.

Going into detail about what the JavaScript actually does to each one of the <div> tags, here
is the ‘‘before’’ and ‘‘after’’ XHTML, as the JavaScript is executed after the page has been fully
loaded:

Before:

<div id="section1">
<p>Haikus</p>

</div>
<div>

<ul id="section2">
option 1
option 2

</div>
<div>

<a href="/texts/joyce/elegy-tired-lakes" id="section3" title="click \
to read" name="click to read">Elegy to the tired lakes

</div>

After:

<div id="section1"><h2>Some Haikus</h2></div>
<div>
<ul id="section2">

Haiku Red
Haiku Blue
Haiku Green

</div>
<div>

<a name="click to read" title="click to read" id="section3" \
href="/texts/joyce/elegy-tired-lakes"><img alt="clouds" \
src="/sites/all/themes/zen/zenlitworkshop/clouds.jpg"/>

</div>

The <h2> tag replaces the <p> tag in section 1, the is inserted into section 2, and the logo
is inserted into the link in section 3. The result can be seen in Figure 12-5.

329

Chapter 12: The jQuery Chapter

Figure 12-5

However, ‘‘The Drupal Way’’ has its own way of loading CSS and JavaScript elements, to ensure
that they are only loaded once and that this is done in the most efficient way possible. One does
not go simply sticking <SCRIPT> tags into pages willy-nilly. Drupal has a PHP function that may
be invoked for both, rich in parameters, which enables you to properly separate content (pages)
from programming logic. That way, the individual editing the content does not have to deal with
<SCRIPT> tags, and the programmer (who will be working with PHP, CSS, and JavaScript files in the
theming directory, and not in a content page, as in this simple example) can simply edit a text file,
which is much cleaner. As you will see in a moment, you can do the same thing in a much cleaner
fashion using jQuery.

Anatomy of jQuery and Its Plug-Ins
jQuery is a JavaScript library that has become very prominent in its own right recently, and adopted not
just by Drupal, of course, but by many other frameworks and companies, such as Microsoft and Nokia.
You will first be introduced to the library and its relationship with Drupal, and then immediately see
a short example programmed right into a Drupal content page, an easy way to get started. The actual
process workflow of this example will be shown. Finally, a full-blown theming example implemented by
editing PHP template files will be introduced.

jQuery Itself
The Drupal community chose to include the jQuery JavaScript Library (see http://jquery.com/) as part
of its core distribution. The rationale here is the same as that of Drupal itself: Just as one should never
start from scratch in creating a website application, but instead can gain enormously from using a CMS
framework that enables you to use, use, and reuse tried and tested components; likewise, you do not
want to start from scratch when it comes to the tricky process of the JavaScript layer of the application.
On September 1, 2006, Steven Wittens, writing enthusiastically about the then-upcoming Drupal 5.x
release, said in his blog (http://acko.net/blog/jquery-is-in-drupal-core):

‘‘After a long wait, the awesome jQuery library has finally been committed to Drupal core.
jQuery 1.0 will be part of the next major Drupal release, for which the code freeze is about
to begin.

330

Chapter 12: The jQuery Chapter

While we did take advantage of jQuery to add some minor glitter to our JavaScript features,
the main advantage is that it makes it easier to develop JavaScript features. Using a simple
CSS-based syntax, you can manipulate any element in the page easily. Loading in chunks of
HTML through Ajax is a snap too.’’

After all, jQuery definitely follows ‘‘The Drupal Way.’’ Drupal most probably opted for jQuery because
of its small, lightweight size — it being based on a small, disciplined core and plug-ins to extend its
functionality — and its use of a hook-like callback approach for easy extensibility.

It is no coincidence that the jQuery home page includes Drupal architecture itself. So in many places on
that site, you can see a lot about how Drupal takes great advantage of the library, just in simple things
like the Autocomplete widget, collapsible form areas, file upload widgets, and more.

Our onload() Example Implemented with jQuery
Follow these steps:

1. Go to Create content�Create page, type in jQuery example one, and set the Body input for-
mat this time to ‘‘PHP Code.’’ (If that format type is not available, go to Administer�Site
building�Modules, and make sure that the PHP filter module is enabled.)

2. Enter jQuery example one in the Title field and the following in the Body field:

<?php
drupal_add_js(
‘$(document).ready(function(){

$("#section1").replaceWith("<h2>Some Haikus</h2>");
$("#section2").replaceWith("Haiku RedHaiku \

BlueHaiku Green");
$("#section3").replaceWith("<img \

src=\’/sites/all/themes/zen/zenlitworkshop/
clouds.jpg\’ alt=\’clouds\’ />");

});’,
‘inline’

);
?>

<div id="section1">
<p>Haikus</p>

</div>
<div>

<ul id="section2">
option 1
option 2

</div>
<div>

<a href="/texts/joyce/elegy-tired-lakes" id="section3" title= \
"click to read" name="click to read">Elegy to the tired lakes
</div>

The result should be identical, as shown in Figure 12-5. However, the JavaScript has been greatly
simplified.

331

Chapter 12: The jQuery Chapter

Before:

<script type="text/javascript">
function alterDiv() {

var section1 = document.getElementById("section1");
section1.innerHTML = "<h2>Some Haikus</h2>";
var section2 = document.getElementById("section2");
section2.innerHTML = "Haiku RedHaiku \

BlueHaiku Green";
var section3 = document.getElementById("section3");
section3.innerHTML = "<img

src=’/sites/all/themes/zen/zenlitworkshop/clouds.jpg’ \
alt=’clouds’ />";

}
</script>
<body onload="alterDiv();">

Notice also the need for the onload statement, no longer required thanks to the jQuery
document.ready() function, which automatically executes after the page is fully loaded.

After:

<?php
drupal_add_js(

‘$(document).ready(function(){
$("#section1").replaceWith("<h2>Some Haikus</h2>");
$("#section2").replaceWith("Haiku RedHaiku \

BlueHaiku Green");
$("#section3").replaceWith("<img \

src=\’/sites/all/themes/zen/zenlitworkshop/
clouds.jpg\’ alt=\’clouds\’ />");

});’,
‘inline’

);
?>

Speaks for itself, doesn’t it?

So, in the context of the workflow of processes interacting between the browser, the HTTP server, Drupal,
and the RDBMS database (e.g., MySQL), you can now clearly see at what point the CSS and JavaScript
files are included, as shown in the diagram of Figure 12-6.

A Theming Example
Let’s immediately do some fancy stuff to the quotes that appear on each page of the On-Line Literary
Workshop in an example brazenly stolen from the jQuery home page example. You don’t know it yet,
but all you need to do is to figure out the selector, chain in an event function, and pipe some action
into that.

Earlier on in the theming chapter, you created a special PHP template for the nodes of the quote content
type. Edit this file (./sites/all/themes/zen/zenlitworkshop/node-quote.tpl.php) in a text editor.

332

Chapter 12: The jQuery Chapter

Browser

Send
Request

Parse
Request

Parse
Request

Execute
Queries

Stick in images, CSS,
Javascript, etc. in all
the right places.

Invoke
Drupal

Invoke
RDBMS

Marshall
PageGet Page

Send PageRender Page

HTTP Server Drupal RDBMS

CSS

Javascript

drupal_add_css()

drupal_add_js()

Figure 12-6

Before:

<div class="node <?php print $node_classes ?>" id="node- \
<?php print $node->nid; ?>"><div class="node-inner">

<?php if ($page == 0): ?>
<p class="quote">

<?php print $title; ?>
</p>

<?php endif; ?>

<?php if (count($taxonomy)): ?>
<div class="taxonomy"><?php print ‘ - ‘ . $terms; ?></div>

<?php endif; ?>

</div></div> <!-- /node-inner, /node -->

After:

<div class="node <?php print $node_classes ?>" id="node- \
<?php print $node->nid; ?>"><div class="node-inner">

333

Chapter 12: The jQuery Chapter

<?php drupal_add_js(path_to_theme() . ‘/quotebello.js’); ?>

<?php if ($page == 0): ?>
<p class="quote">
<?php print $title; ?>

</p>
<?php endif; ?>

<?php if (count($taxonomy)): ?>
<div class="taxonomy"><?php print ‘ - ‘ . $terms; ?></div>

<?php endif; ?>

</div></div> <!-- /node-inner, /node -->

The HTML generated by Drupal and sent to the browser whenever the content is of type ‘‘quote’’ includes
the following line in the <head> tag section:

<script type="text/javascript" src="/sites/all/themes/zen/zenlitworkshop/ \
quotebello.js?n"></script>

Basically, the result of this script is that whenever a quote content type is displayed, the JavaScript file
quotebello.js will be loaded from its location in the Zen subtheme directory, invoked in the title section
of the rendered page. Code for quotebello.js:

$(document).ready(function(){
$(".quote").hide();
//$("p.quote").show("slow");
//$("p.quote").show(1500);
$("p.quote").addClass("ohmy").show(1500);

});

Basically, this says that when the document is ready, all <p> tags of class quote should be hidden, and
then the class ohmy should be added dynamically to objects of that type. Then the effects type function
shown should be executed with a speed of 1,500 ms (milliseconds).

Notice that jQuery derives its power and simplicity and ease of adoption by using
the same principles as CSS: First select an element, then specify its attributes. In the
case of jQuery, you first select a DOM object, then invoke one or more chained
functions whose execution modifies the DOM.

The neat thing of adding a dynamic class is that the execution real-time effect of fading in and out can
be styled in development time just by a graphic designer editing a CSS file, and without having to call in
Einstein, the JavaScript programmer. Add the following lines to our old friend zenlitworkshop.css in the
Zen subtheme directory to put all the pieces into effect:

.ohmy {
background-color: #abc0ff;

}

334

Chapter 12: The jQuery Chapter

Now enjoy the animated quotes. By the way, what if it’s not working? How do you know the JavaScript
code is even loaded? A great way is, as in other cases, by using the Firebug Add-on for Firefox. Figure 12-
7 shows the Script tag and the quotebello.js script file selected.

Figure 12-7

Plug-Ins
jQuery elegantly has in common with the ‘‘Drupal way’’ an extremely lightweight footprint, with just the
bare essentials in core, in conjunction with an extremely flexible extensibility framework attained thanks
to the addition of plug-ins (modules in the case of Drupal).

Let’s try one. You can find a complete list of plug-ins by category at http://plugins.jquery.com/. One
idea, to replace our own homespun effort in the previous example, is the Effects jTypewriter plug-in,
which you can find at http://plugins.jquery.com/project/jTypeWriter.

1. Download the JS file and install it in the Zen subtheme directory. You need just two changes.

2. First, modify node-quote.tpl.php so that it loads the plug-in also:

<div class="node <?php print $node_classes ?>" id="node-<?php print
$node->nid; ?>"><div class="node-inner">

335

Chapter 12: The jQuery Chapter

<?php drupal_add_js(path_to_theme() . ‘/quotebello.js’); ?>
<?php drupal_add_js(path_to_theme() . ‘/jTypeWriter.js’); ?>

<?php if ($page == 0): ?>
<p class="quote">

<?php print $title; ?>
</p>

<?php endif; ?>

<?php if (count($taxonomy)): ?>
<div class="taxonomy"><?php print ‘ - ‘ . $terms; ?></div>

<?php endif; ?>

</div></div> <!-- /node-inner, /node -->

3. Next, modify quotebello.js so that it reads as follows:

$(document).ready(function(){
$("p.quote").addClass("ohmy").jTypeWriter();

});

4. Try out the following parameters to see which you prefer:

$(document).ready(function(){
//$("p.quote").addClass("ohmy").jTypeWriter();
$("p.quote").addClass("ohmy").jTypeWriter({duration:2.5,type:"word"});

});

Drupal 5.x Uses of jQuery and Other
JavaScript Libraries

It is important to review some JavaScript magic that was included in the Drupal CMS Framework
before jQuery was introduced, since a lot of it is still prevalent and coexists with jQuery at the present
time — the jstools module. Then mention is made of some JavaScript libraries (notably script.aculo.us
and Prototype), which are jQuery’s ‘‘competition’’ and may still want to be used by Drupal developers
in peaceful coexistence with jQuery.

This section also deals with how jQuery is used in the Drupal User Interface itself, and with how devel-
opment can be synchronized between the two very active Open Source projects. It is very common for
many jQuery releases to emerge during the life cycle of a single Drupal release, so ways of keeping the
jQuery version up-to-date are discussed.

jstools
Before there was jQuery, there was jstools (http://drupal.org/project/jstools), which is an
extremely popular collection of modules and libraries developed for Drupal 5.x. Some modules provide
direct functionality, while others are dependencies for other modules. They have in common with
jQuery two things:

336

Chapter 12: The jQuery Chapter

The objective of ‘‘graceful degradation,’’ providing fully usable functionality to pages when
JavaScript is not enabled in the browser.

The attachment of ‘‘behaviors’’ to page elements on the basis of CSS classes.

The most important components of the jstools module set are the following:

Activemenu Module — Upon installation, standard Drupal block menu trees are converted to
Ajax trees, that is, when you click a node having children, it opens or closes in place without a
page refresh.

Jscalendar Module — A full Drupal integration of Mihai Bazon’s DHTML pop-up calendar
available for Drupal date fields. It became integrated into the CCK Date field, becoming available
as an optional widget.

Tabs Module — This module, also part of the jstools project group of modules, was an early
pioneer in that it actually integrated the jQuery tabs plug-in by Klaus Hartl, which can be found
at http://stilbuero.de/tabs. This was a use of jQuery outside and independent of the main
jQuery Drupal integration.

Prototype and script.aculo.us
But jQuery isn’t the only modern JavaScript library, not by a long shot. Ruby on Rails includes
the JavaScript duo of prototype and script.aculo.us to provide similar solutions in its frame-
work. Actually, before jQuery was chosen for Drupal, spectacular integration of these libraries
was achieved by Ayman Hourieh, who developed a drag-and-drop portal interface very sim-
ilar to what Earl Miles’s Panels modules offer, where you can define the layout and then
drag-and-drop functional blocks based on modules to add functionality to your page. See
http://aymanh.com/drag-drop-portal-interface-with-scriptaculous for the explanation,
and http://aymanh.com/files/portal/ for the spectacular demo.

I have used this prototype and script.aculo.us with Drupal (to make a Desktop interface application
actually, based on the Prototype Windows Class; see http://prototype-window.xilinus.com/).

But there is a problem, since both jQuery and Prototype use the $() function as an alias for the invocation
of the library, and there are no namespaces. On the jQuery site, however, a work-around was published
at http://docs.jquery.com/Using_jQuery_with_Other_Libraries:

var $j = jQuery.noConflict();
// Use jQuery via $j(...)
$j(document).ready(function(){

$j("div").hide();
});

However, jQuery.noConflict() did not work with jQuery 1.0.1, the version included with Drupal 5.x.
The alternative is to take each of the following files in the Drupal ./misc directory:

autocomplete.js

collapse.js

drupal.js

337

Chapter 12: The jQuery Chapter

progress.js

tableselect.js

textarea.js

upload.js

update.js

and do the following:

At the top of the file, add the statement var $jq = jQuery.

Change every instance of $(...) to $jq(...).

In version 1.1.x and later, the first line in these files may read:

var $j = jQuery.noConflict();

However, this does involve patching the ./misc directory, part of the Drupal core; which creates prob-
lems when it comes to updating every time a Drupal security release becomes available.

Drupal 5.x UI
Starting with Drupal 5.x, as described above, the jQuery core became part and parcel of every Drupal
release, and all uses of JavaScript were refactored to take advantage of this. As a result, several aspects of
the Drupal UI (user interface) took advantage of this.

Autocomplete — When the Autocomplete Widget is used in a CCK field, or when, for example,
author information is edited for a node, the Autocomplete Widget is used

Collapse — When a form is divided into fieldset groups, the groups become collapsible, thanks
to the use of jQuery, which is handed a selector to locate each fieldset, and a function to support
collapsible behavior.

Upload — When you upload a file with the core Drupal Upload module, jQuery is used to pro-
vide progress bar behavior.

The jQuery Update Module
But the jQuery and Drupal development cycles are not, of course, meshed. That is, when Drupal 5 was
released, the version of jQuery included with it was version 1.0.1. In all subsequent versions of Drupal
5.x, this remained unchanged. The result was that a point was reached at which Drupal users could not
avail themselves of the current version of jQuery, or jQuery plug-ins.

Integration is always a major problem when working with interlocking Open Source community projects.
Fortunately, both are as extremely talented as they are active. However, although jQuery was an excellent
choice for Drupal, being lightweight and event-centric, the Drupal core was wrapped around what very
quickly became an old, and really quite obsolete, version of jQuery.

338

Chapter 12: The jQuery Chapter

Enter the jQuery Update module to the rescue. Once installed and enabled in any Drupal 5.x instal-
lation, you can copy a more recent version of jQuery to the Drupal ./misc directory that is backward
compatible with the core Drupal use of the JavaScript library. This is implemented thanks to John Resig’s
compat-1.0.js plug-in. Of course, when your Drupal installation is updated with a security release, for
example, the newer version of jQuery must again replace the 1.0.1 version included with Drupal.

With time, even the Update module became obsolete, its architecture unable to support later versions of
the very dynamic progress characteristic of the jQuery community. So the Update module did become
updated itself, twice, the only inconvenience being that each time more files have to be copied to the
./misc directory. However, this is a small price to pay for being able to use the latest version of jQuery,
jQuery plug-ins, and jQuery interface (the UI library that allows for drag-and-drop, and a host of other
user interface JavaScript goodness).

Advanced Drupal 5.x Examples
Since jQuery is part of the Drupal core and is used by the Drupal User Interface, and so much fuss is
made of it, one is obviously interested in leveraging this spectacular resource that comes for free. But it
is not immediately obvious how to go about doing so. To this end, you are presented in this section with
three how-tos.

Reusing the Collapsible Widget
Here is a most obvious need and a need not easily answered in Drupal 5.x times: how to extend Drupal
widgets themselves based on jQuery. Let’s suppose you have a profile themed with a series of sections
and that you wish to make each section collapsible. Let’s suppose further, for the sake of argument, that
these sections will be themed with a template that receives an array of nodes in the variable $nodes. The
template is invoked via a callback function, along with the parameter $nodes. Here is the snippet from
the theme’s template.php:

/**
* Catch the theme_user_profile function, and redirect through the template api
* The user profile will be overridden by this theming function, which sends
* the variable $nodes to the invoked template.
*/

function phptemplate_user_profile($user, $fields = array()) {
// Pass to phptemplate, including translating the parameters to

an associative array. The element names are the names that the
variables

// will be assigned within your template.

// Get all the nodes associated with the user profile via the node
profile module

$profile_node = nodefamily_relation_load($user->node_id);
$profile_nid = $profile_node[0] -> nid;
if ($profile_nid) {
// Specify section header names for user profile editing page

339

Chapter 12: The jQuery Chapter

$nodeNames = jobs_get_node_names();
$profile = _phptemplate_callback(’profile-only-section’,

array(’node’ => $profile_node[0]));
$profile_sections = ‘’;
$profile_node_sections =

nodefamily_relation_load_by_type($profile_nid);
// here is where the template, its name, and its parameters are specified

/****
* logic to show all sections, including empty ones
*
*/

foreach ($nodeNames as $sectionComputerName => $sectionName) {
// if the guy has some info for this node
$sectionNodes = $profile_node_sections[$sectionComputerName];
$profile_sections .= _phptemplate_callback(’profile-section’,

array(’name’ => $sectionName, ‘nodes’ => $sectionNodes, ‘node_type’
=> $sectionComputerName));

}
// Has the user filled out enough info to warrant display?
$cv_state = some_function_to_tell_us_this($user, $profile_node,

$profile_node_sections);
return _phptemplate_callback(’user_profile’, array(

‘profile’ => $profile,
‘profile_sections’ => $profile_sections,
‘cv_state’ => $cv_state,
‘user’ => $user,
‘fields’ => $fields)
);

} else {
// This is for users not using the node profile module, like

webmaster and admin
$vars = array(

‘user’ => $user,
‘fields’ => $fields,
‘picture’ => theme(’user_picture’, $user),
‘categories’ => ‘’,

);
// Extract each field into its own template.

foreach ($fields as $category => $items) {
$vars[’category’] = $category;
$vars[’items’] = ‘’; // reset this variable!

foreach ($items as $item) {
// we could use array_merge here but I’m putting them all in for
// clarity of what variables we have available.
$vars[’title’] = $item[’title’];
$vars[’class’] = $item[’class’];
$vars[’value’] = $item[’value’];

// run the item template
$vars[’items’] .= _phptemplate_callback(’user_profile_item’, $vars);

}
// Now that we have all the items, run it through our category template.

340

Chapter 12: The jQuery Chapter

$vars[’categories’] .= _phptemplate_callback(’user_profile_category’, $vars);
}

// And put it all in the final wrapper.
return _phptemplate_callback(’user_profile’, array(’vars’ => $vars));

}
}

That is quite a large function residing in the file template.php in the theme directory. The upshot of it
all is to invoke the template, which will actually show the user profile sections and pass it the necessary
parameters, especially the array of $nodes itself.

Here is the template, which actually makes use of the collapsible behavior built into the Drupal core
thanks to jQuery:

<div class="profile-section-anchor">
<a name="<?php echo $node_type . ‘_node_form’ ?>">

</div>
<div class="profile-section">

<?php drupal_add_js(’misc/collapse.js’); ?>

<fieldset class=" collapsible collapsed">
<legend><?php echo $name ?></legend>
<?php if ($nodes) { ?>
<?php foreach ($nodes as $node) { ?>

<?php print node_view($node, false, false, false); ?>
<form class="profile-section-edit-button">
<input type="button" onClick="self.location=’<?php print \

$GLOBALS[’base_url’] . ‘/node/’ . $node -> nid . ‘/edit’; ?>’"
value="<?php echo t(’Edit’)?>"/>

</form>
<?php } ?>
<?php } ?>
<?php $max = nodefamily_content_type_get_max($node_type); if

(!($max != 0 && count($nodes) >= $max)) { ?>
<?php

$nodeNames = jobs_get_node_names();
$node_type_label = $nodeNames[$node_type];

?>
<form><input type="button" onClick="self.location=’<?php print \

$GLOBALS[’base_url’] . ‘/node/add/’ . $node_type; ?>’"
value="Agregar <?php echo $node_type_label ?>"/></form>

<?php } ?>
</fieldset>

</div>

It is in lines 3–5, which are highlighted in gray, that the fieldset is inserted into the XHTML so that it acts
as a wrapper around each section, having a tag name and class attribute selectors, which will work with
the way jQuery manages collapsible fieldsets in Drupal core.

The result is shown in Figure 12-8, where one of the sections (‘‘Institutional information’’) has been
clicked open.

341

Chapter 12: The jQuery Chapter

Figure 12-8

Dependent Autocomplete Fields
This is how you can implement an autocomplete nodereference field that depends on a choice made in
another such field in Drupal 5.x. Suppose there are three content types:

Content type one: Company

Content type two: Contact

Content type three: Ticket

The Company content type has a nodereference field where Contacts can be filled in (multiple autocom-
plete field).

Among other fields, the Ticket content type has a select field type (phone call, sale, task, bug, hot date,
etc.), a single non-multiple nodereference field for Company, and multiple nodereference fields for
Contacts involved in the ticket. Since this could involve a company having several thousand contacts
distributed among 500 companies, the chance of people with the same name but working in different
companies (and actually being different individuals) is high (muchos Marı́a Gonzalez y Henry Smith).

Now, any autocomplete function has three fundamental components:

A handler (a PHP function that will do the actual looking up)

A MENU_CALLBACK path (URI), which will be invoked by the autocomplete query to access
the ‘‘handler’’

The special #autocomplete_path selector in a form field

342

Chapter 12: The jQuery Chapter

In this example, the three or four Contact nodereference autocomplete fields, by default, already have
all this, but the default handler [which lives in the entrails of CCK’s nodereference.module, specifically
the nodereference_autocomplete() function registered by nodereference_menu() and referenced in
the nodereference_widget() function] will unwittingly bring me all Jane Does and Marı́a Bustamantes
whether they work for the already selected company or not.

To accomplish this, you need three things: a URI (path) for the autocomplete functionality to call a con-
crete PHP function (the callback function), a way of attaching that trigger to a given field using the
autocomplete function, and finally, the implementation of the callback function (the autocomplete han-
dler). These are provided in the following three steps.

Step 1: MENU_CALLBACK URI Setup

Question: Where does the code go?
Answer: All the code goes into a module, call it intranet.module (create the appropri-
ate intranet.info file first). The only exception is the JavaScript code, which goes into
intranet.js in the module directory. I put my modules into ./sites/all/modules/, so the
three files would go into ./sites/all/modules/intranet. You can, of course, name the
module whatever you want. Just be sure the drupal_add_js function properly invokes
the JavaScript file.

/**
* Implementation of hook_menu().
*/

function intranet_menu($may_cache) {
$items = array();
$items[] = array(
‘path’ => ‘intranet/ticket/contact/autocomplete’,
‘title’ => ‘contact autocomplete for ticket’,
‘type’ => MENU_CALLBACK,
‘callback’ => ‘intranet_autocomplete’,
‘access’ => user_access(’access content’),

);
return $items;

}

All we are saying here is that the path intranet/ticket/contact/autocomplete will invoke the function
intranet_autocomplete, the ‘‘handler.’’

Step 2: Attach the Overriding URI
In this section, you attach the overriding URI to the Contact autocomplete field with unobtrusive jQuery.

The module continues with the following functions:

function intranet_form_alter($form_id, & $form) {
if ($form[’type’][’#value’] == ‘ticket’) {

$form[’#theme’] = ‘intra_ticket’;

343

Chapter 12: The jQuery Chapter

}
}
function theme_intra_ticket($form) {
drupal_add_js(drupal_get_path(’module’, ‘intranet’) . ‘/intranet.js’);

}

And here is the intranet.js file invoked in the last (short and sweet) function:

1 if (Drupal.jsEnabled) {
2 $(document).ready(function() {

3 $("#edit-field-company-0-node-name").blur(function() {

4 companyvalue = $("#edit-field-company-0-node-name").attr("value");
5 re = /\[nid:(.*)\]/;
6 resarray = re.exec(companyvalue);
7 if (resarray) company = resarray[1];

8 $(’input.autocomplete[@id ˆ =edit-field-contact-]’).each(function () {

9 this.value="http://mentor/intrassa/intranet/ticket/contact/autocomplete/"
+ company;

10 Drupal.autocompleteAutoAttach();

11 });
12 })
13 })
14 }

OK, explanations are in order:

On line 3, an anonymous function is assigned to the blur event of the company autocomplete
field. The idea is that the user selects a company, and then this anonymous function gets
invoked. This anonymous function will first extract the node ID of the selected company via
JavaScript’s regular expression tools.

Then, moving right along, on line 8, another anonymous function will iterate over the multiple
contact fields (those that start with an id attribute of edit-field-contact-) and will shove in
the new handler URI to which is tacked on the company node ID as parameter to the handler.

Then, on line 10, Drupal.autocompleteAutoAttach() is invoked to fix the autocomplete ‘‘com-
munity plumbing’’ (see ./misc/autocomplete.js).

All that is left is the handler itself.

Step 3: The Handler
This is the Drupal 5.x style with views as an extra data abstraction layer — none of your direct database
accessing.

Here it is:

/**
*
*/
function intranet_autocomplete($company) {

344

Chapter 12: The jQuery Chapter

$view = views_get_view(’ContactsForASingleCompany’);
$the_contacts = views_build_view(’items’, $view, array(0 =>

$company), false, false);
$matches = array();
foreach ($the_contacts[’items’] as $contact) {
$matches[$contact->node_title . ‘ [nid:’ . $contact->nid . ‘]’]\

= $contact->node_title;
}
print drupal_to_js($matches);
exit();

}

The parameter $company is supplied by the calling JavaScript function in intranet.js, and it is used to
satisfy the argument of the pre-created View created interactively with the Views module for another
purpose and reused here. You iterate over the contacts that the built View brings us, and set up the
$matches array, which you translate to JSON (Javascript lingua franca) before exiting (which is what
autocomplete expects).

This is a simple example that should serve as a springboard to any needs along these lines that you may
have in your Drupal 5.x systems.

Making Use of Hierarchical Select (Drupal 5.x)
This is the first of two jQuery-based examples for Drupal 5.x that make use of the aforementioned jQuery
Update module (http://drupal.org/project/jquery_update). You are going to take a look at the Ajax
Goodness of the Hierarchical Select module (http://drupal.org/project/hierarchical_select), in
order to enhance the user experience when using hierarchical vocabulary select lists. Follow these steps:

1. First install the JQuery Update module just like any other, but after enabling it, the README
will instruct you to copy one or more files to the Drupal ./misc directory. If you fail to carry
out that copy, you will be warned when you visit the administration pages.

If you install, say, JQuery Update version 5.x-2.0, once it is enabled at Administer�Site
building�Modules, you must copy all the JavaScript files found in the ./sites/all/modules/
jquery_update/misc directory to the Drupal ./misc directory. These are the files involved:

|-- CHANGELOG.txt
|-- LICENSE.txt
|-- README.txt
|-- compat.js
|-- jquery_update.info
|-- jquery_update.install
|-- jquery_update.module
‘-- misc

|-- collapse.js
|-- farbtastic
| ‘-- farbtastic.js
|-- jquery.js
|-- tableselect.js
‘-- upload.js

This may seem like quite a lot, but it means that you can have the latest jQuery version back-
ported to Drupal 5 (jQuery 1.2.6 with version 5.x-2.0 of the update module)!

345

Chapter 12: The jQuery Chapter

2. Once JQuery Update has been installed and enabled and the appropriate files copied, install
the second dependency, JQuery Interface (http://drupal.org/project/jquery_interface).

3. Install the Hierarchical Select (version 5.x-3.0-rc3 or later, which requires JQuery Update
5.x-2.0 or later, thus enabling jQuery 1.2.6 or later . . . what a mouthful, but such is the com-
plexity of the difficulties involved . . .).

In the example here, the following Hierarchical Select modules were enabled:

Hierarchical Select

Hierarchical Select Taxonomy

Hierarchical Select Taxonomy Views (for exposed filters in Views)

4. Decide which hierarchical taxonomy you are going to use it with. In the example here, there
is a taxonomy, called Types, associated with the Story content type, with the following
terms, organized as a single hierarchy:

Level of Interest

-- Not very interesting

-- Somewhat interesting

-- Very interesting

Popularity

-- Not very popular

-- Quite popular

-- Very popular

Quality

-- High quality

-- Mediocre

-- So-so

5. When you create a new story normally, you are presented with a dropdown list showing the
hierarchy, and may select a term.

To enable hierarchical select in Drupal 5.x, however, go to Administer�Content
management�Categories�Edit vocabulary, and scroll down to the Hierarchical Select
configuration. Select the checkbox ‘‘Use the Hierarchical Select form element for this
vocabulary,’’ and click on the Submit button.

Now when you create or edit a story, in the Categories section, instead of a full dropdown list showing
all possible terms in the hierarchy, you are presented with a dropdown list of only the parent terms, in
this case, Level of Interest, Popularity, and Quality. Upon choosing one of these, an additional dropdown

346

Chapter 12: The jQuery Chapter

box slides out to the right, containing the three alternatives, that is, only those terms that are children of
the parent term previously selected. Figure 12-9 shows what this looks like after a child term has been
selected.

Figure 12-9

The module is really part of what I would call ‘‘the quiet revolution’’ in Drupal modules, and greatly
enhances usability. It comes packaged with integration modules for views (exposed filters), book, menus,
and other modules.

Even as it is configured in this example, there are a host of options, involving labels, whether or not the
term of the lowest depth only should be chosen or the whole tree, and so on. It is a very useful exercise to
play around with the configuration options found when editing the Vocabulary and see how the results
differ.

Validate, Validate, Validate!
A well-designed Form will validate the information a user types into the various fields right in
the browser before submitting it to the server, since validation done only on the server is very
time-consuming. The user would have to press the Submit button, wait for the server to respond, and
then have to change information and repeat the process.

You will now see how to accomplish this ‘‘The Drupal Way’’: by using jQuery and a jQuery plug-in,
encapsulated in a Drupal module. In this case, both a Drupal 5.x thread and a 6.x thread are provided.

Drupal 5.x Thread
A very exciting module in the jQuery pantheon is jQuery plug-ins (http://drupal.org/project/
jquery_plugin), which supports the jQuery Validation plug-in (see http://plugins.jquery.com/
project/validate), by means of which you can have time-saving Ajax validation in your
Drupal forms.

Install and enable the module, which does very little more than provide a single non-redundant and
conveniently centralized place to house jQuery plug-ins on a Drupal website installation.

Then, try it out on a test page (create a new content item of type page, making sure to specify the PHP
input filter):

<?php
jquery_plugin_add(’metadata’);
jquery_plugin_add(’validate’);
drupal_add_js (

‘$(document).ready(function(){
$("#commentForm").validate(

347

Chapter 12: The jQuery Chapter

);}); ‘,
‘inline’);

?>

<form class="cmxform" id="commentForm" method="get" action="">
<fieldset>
<legend>A simple comment form with submit validation and default

messages</legend>
<p>

<label for="cname">Name</label>
*<input id="cname" name="name" size="25" class="hola \

{required:true,minLength:3}" minlength="2" />
</p>
<p>

<label for="cemail">E-Mail</label>
*<input id="cemail" name="email" size="25" class="required email" />

</p>
<p>

<label for="curl">URL</label>
 <input id="curl" name="url" size="25" class="url" value="" />

</p>
<p>

<label for="ccomment">Your comment</label>
*<textarea id="ccomment" name="comment" cols="22"></textarea>

</p>
<p>

<input class="submit" type="submit" value="Submit"/>
</p>

</fieldset>
</form>

Here is another test page:

<?php
jquery_plugin_add(’metadata’);
jquery_plugin_add(’validate’);
drupal_add_js (

‘$(document).ready(function(){
$("#commentForm").validate({

rules: {
cname: {

required: true,
minLength: 2

},
cemail: {

required: true,
email: true

},
}

});
}); ‘,

348

Chapter 12: The jQuery Chapter

‘inline’);

?>

<form class="cmxform" id="commentForm" method="get" action="">
<fieldset>

<legend>A simple comment form with submit validation and default
messages</legend>

<p>
<label for="cname">Name</label>
*<input id="cname" name="cname" size="25" class="hola"

minlength="2" />
</p>
<p>
<label for="cemail">E-Mail</label>
*<input id="cemail" name="cemail" size="25" class="equus" />

</p>
<p>
<label for="curl">URL</label>
 <input id="curl" name="curl" size="25" class="equus" value="" />

</p>
<p>
<label for="ccomment">Your comment</label>
*<textarea id="ccomment" name="ccomment" cols="22"></textarea>

</p>
<p>
<input class="submit" type="submit" value="Submit"/>

</p>
</fieldset>
</form>

Drupal 6 Thread: An Ajax-Validated Application Form
Let’s go into more detail with this jQuery plug-in by using it to add a validation layer to the application
form already implemented for the user story, ‘‘A Workshop Leader can approve applications to join the
workshop.’’ Follow these steps:

1. Install the jQuery plug-ins module for Drupal 6 in the On-Line Literary Workshop website,
logging in as user dev.

2. Let’s first set up a test page emulating the documentation of this jQuery plug-in at
http://docs.jquery.com/Plugins/Validation#Example. Create a new content item of
type page, using input format php:

<?php
jquery_plugin_add(’metadata’);
jquery_plugin_add(’validate’);
drupal_add_js (

‘$(document).ready(function(){
$("#commentForm").validate();

}); ‘,
‘inline’);

349

Chapter 12: The jQuery Chapter

?>
<form class="cmxform" id="commentForm" method="get" action="">
<fieldset>
<legend>A simple comment form with submit validation and default

messages</legend>
<p>

<label for="cname">Name</label>
*<input id="cname" name="name" size="25" class="required"

minlength="2" />
</p>
<p>

<label for="cemail">E-Mail</label>
*<input id="cemail" name="email" size="25"

class="required email" />
</p>
<p>

<label for="curl">URL</label>
 <input id="curl" name="url" size="25" class="url"

value="" />
</p>
<p>

<label for="ccomment">Your comment</label>
*<textarea id="ccomment" name="comment" cols="22"

class="required"></textarea>
</p>
<p>

<input class="submit" type="submit" value="Submit"/>
</p>

</fieldset>
</form>

The result can be seen in Figure 12-10.

Figure 12-10

350

Chapter 12: The jQuery Chapter

Creating litworkshop.info and litworkshop.module
OK, it works great. Now, how to integrate with the real-world application form using ‘‘The Drupal
Way’’? Well, ‘‘The Drupal Way’’ here might very well indicate that the way to go is to modify the appli-
cation form on the fly. In order to do so, you need to create a small utility module for your website
application (you almost always will have to, anyway) and write just a little bit of PHP. Call this module,
appropriately enough, the Litworkshop module. Create the directory ./sites/all/modules/litworkshop,
and create two text files there:

litworkshop.info

litworkshop.module

Notice that the name of the theme used has purposely been called zenlitworkshop, so as not to be the same
as that of any installed and enabled module. Doing so can cause namespace conflicts (PHP gets very
confused with the same name appearing in different places).

The text for litworkshop.info specifies the module name and description. The dependencies must be
enabled before it can be enabled itself. Additionally, the package the module will be grouped with on the
Administration modules page and the version of Drupal core for which the module is implemented are
included:

; Id
name = Literary workshop utils
description = On-Line Literary Workshop Utility Module.
dependencies[] = jquery_plugin
package = Literary workshop
core = 6.x

The text for litworkshop.module starts out with basic module header comment blocks compatible with
Drupal coding style (see http://drupal.org/coding-standards) and the beginnings of an implemen-
tation of hook_form_alter(). Implementing this function overrides the default rendering of the form,
identified by parameter $form_id. Here is the initial version, which simply inserts an h2 tag at the top of
the form, once the new module has been enabled:

<?php
// Id

/**
* @file
* Literary workshop utils
*
* On-Line Literary Workshop Utility Module.
*/

/**
* Implementation of hook_form_alter().
*
* Called on all Drupal forms.
* A switch statement can separate code destined
* for specific forms.
*
*/

351

Chapter 12: The jQuery Chapter

function litworkshop_form_alter(&$form, &$form_state, $form_id) {
switch ($form_id) {
case ‘application_node_form’:

$form[’testit’] = array(
‘#value’ => ‘<h2>Validate!</h2>’,
‘#weight’ => -10

);
break;

default:
break;

}
}

The form ID is identified using Firebug to reveal the form’s HTML and finding the value of a hidden
field bearing the name form_id, similar to the following:

<input type="hidden" name="form_id" id="edit-application-node-form"
value="application_node_form" />

This is shown in Figure 12-11, which also shows how the module (after being enabled) inserts the ‘‘Vali-
date!’’ h2 tag at the top of the form:

Figure 12-11

352

Chapter 12: The jQuery Chapter

You can also find it by doing a text search of the HTML source provided by any browser, of course.

Getting the Plug-in to Function
Now, to get the plug-in to function, two things are necessary:

1. Load the jQuery Validation plug-in every time this particular form is invoked (e.g., when
someone clicks on the Join! primary menu option).

2. Add metadata to the fields you wish to validate.

In order to do the latter, you need to add a ‘‘class’’ attribute to the corresponding field to be validated. To
be honest, you need to do a debug print_r of the $form tree, fortunately passed in as a parameter to the
hook you are implementing, so as to know how to specify any particular field. To do this, follow these
steps:

1. Add in the following snippet:

case ‘application_node_form’:
print_r($form);
break;

2. Click ‘‘Join!’’ and if you look at the source, chances are your browser will pretty-print the
form. Now, the E-mail field is the most straightforward to deal with since it is simply the
title field. Find the following in the (hopefully formatted) print_r statement:

[title] => Array
(

[#type] => textfield
[#title] => E-mail
[#required] => 1
[#default_value] =>
[#maxlength] => 255
[#weight] => -5

)

3. Since $form is passed in by reference, fortunately, you can simply change it on the fly (which,
of course, is the whole idea of what you are trying to accomplish with this example). Here
is the completed litworkshop_form_alter() hook implementation, specifying validation
for the title field, which bears the E-mail label (note that the code for loading the jQuery
plug-in has been added also):

function litworkshop_form_alter(&$form, &$form_state, $form_id) {
switch ($form_id) {
case ‘application_node_form’:

//Load jQuery Validation plugin
//$path = drupal_get_path(’module’, ‘litworkshop’);
jquery_plugin_add(’metadata’);
jquery_plugin_add(’validate’);
//drupal_add_js($path . ‘/javascript/do_validate.js’);
drupal_add_js (

353

Chapter 12: The jQuery Chapter

‘$(document).ready(function(){
$("#node-form").validate();

}); ‘,
‘inline’);
// Specify how to register each field.
$form[’title’][’#attributes’] = array(’class’ => ‘required email’);
break;

default:
break;

}
}

The results of attempting to fill in a value for this field that is not a well-formed e-mail address and then
continuing on to the next field can be seen in Figure 12-12.

Figure 12-12

Drupal 6.x jQuery Breakthrough
You get more spectacular widgets in Drupal 6 in the administration fields. Examples of these
are what you have seen in use in the fantastic Views 2 user interface, Content Construction Kit
fields management, and Menu management administration pages, and widgets that in the Drupal
world used to use external ‘‘Web 1.0’’ JavaScript library widgets (like the ubiquitous DHTML
calendar used in the jstools module–based jCalendar by Mihai Bazon of HTMLArea fame — see
www.bazon.net/mishoo/). These are now integrated more seamlessly as jQuery widgets (see Ted
Serbinski’s page, http://tedserbinski.com/jcalendar/index.html, where the current use of Kelvin
Luck’s jQuery date picker is commented).

And the Drupal use of jQuery plug-ins and the creation of your own widgets and solutions have also
become greatly enhanced.

In the hierarchical select examples, you have already seen how easy it is in Drupal 6.x to download any
current jQuery plug-in and integrate it into Drupal, and to make full use of jQuery in general.

354

Chapter 12: The jQuery Chapter

An Example jQuery Ajax Alarm Module for Drupal 6.x
In the On-Line Literary Workshop, you want to make sure there is love in the world. That is, in real time,
an alarm must inform when there is not a single literary piece without the word love in its title.

That could be accomplished via a timer installed whenever literary pieces are viewed. Every time the
timer runs down, an Ajax URI may be invoked, which should return false if there is no love, and true if
there is. If there is no love, an alert should be sent to the browser; otherwise, nothing should be done.

Creating a Simple View
The first thing to do is to create a simple view that lists the items containing the word love in the title. Go
to Administer�Site building�Views, and create a view with the following characteristics:

View Configuration Value

Title Detect literary pieces whose title contains the word love.

Fields Node: Title Name
Taxonomy: Term Genre
User: Name Author
Node: Updated date Date
Node: Sticky Sticky

Filters Node: Type = Literary Piece
Node: Title contains love

Page display Include to be able to specify a path.

Path islove

Alternatively, the following code may be imported into a new view or else inserted as file
love_letter_detector.inc in the Views module directory:

$view = new view;
$view->name = ‘love_letter_detector’;
$view->description = ‘’;
$view->tag = ‘’;
$view->view_php = ‘’;
$view->base_table = ‘node’;
$view->is_cacheable = FALSE;
$view->api_version = 2;
$view->disabled = FALSE; /* Edit this to true to make a default view
disabled initially */

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);
$handler->override_option(’fields’, array(

‘title’ => array(
‘label’ => ‘Name’,
‘link_to_node’ => 1,

355

Chapter 12: The jQuery Chapter

‘exclude’ => 0,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
‘name’ => array(
‘label’ => ‘Genre’,
‘link_to_taxonomy’ => 0,
‘exclude’ => 0,
‘id’ => ‘name’,
‘table’ => ‘term_data’,
‘field’ => ‘name’,
‘relationship’ => ‘none’,

),
‘name_1’ => array(
‘id’ => ‘name_1’,
‘table’ => ‘users’,
‘field’ => ‘name’,
‘label’ => ‘Author’,

),
‘changed’ => array(
‘id’ => ‘changed’,
‘table’ => ‘node’,
‘field’ => ‘changed’,
‘label’ => ‘Date’,

),
‘sticky’ => array(
‘id’ => ‘sticky’,
‘table’ => ‘node’,
‘field’ => ‘sticky’,

),
));
$handler->override_option(’filters’, array(

‘type’ => array(
‘operator’ => ‘in’,
‘value’ => array(

‘literary_piece’ => ‘literary_piece’,
),
‘group’ => ‘0’,
‘exposed’ => FALSE,
‘expose’ => array(

‘operator’ => FALSE,
‘label’ => ‘’,

),
‘id’ => ‘type’,
‘table’ => ‘node’,
‘field’ => ‘type’,
‘relationship’ => ‘none’,

),
‘title’ => array(
‘operator’ => ‘contains’,
‘value’ => ‘love’,
‘group’ => ‘0’,
‘exposed’ => FALSE,

356

Chapter 12: The jQuery Chapter

‘expose’ => array(
‘operator’ => ‘’,
‘label’ => ‘Name’,
‘use_operator’ => 0,
‘identifier’ => ‘filter0’,
‘optional’ => 1,
‘remember’ => 0,

),
‘case’ => 1,
‘id’ => ‘title’,
‘table’ => ‘node’,
‘field’ => ‘title’,
‘relationship’ => ‘none’,

),
));
$handler->override_option(’access’, array(

‘type’ => ‘none’,
‘role’ => array(),
‘perm’ => ‘’,

));
$handler->override_option(’title’, ‘Detect literary pieces whose title \
contains the word love’);
$handler->override_option(’header_format’, ‘1’);
$handler->override_option(’footer_format’, ‘1’);
$handler->override_option(’empty_format’, ‘1’);
$handler->override_option(’items_per_page’, ‘20’);
$handler->override_option(’use_pager’, TRUE);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘columns’ => array(),
‘default’ => ‘’,
‘info’ => array(
‘title’ => array(

‘sortable’ => TRUE,
),
‘name_1’ => array(

‘sortable’ => TRUE,
),
‘changed’ => array(

‘sortable’ => TRUE,
),

),
‘override’ => FALSE,
‘order’ => ‘asc’,

));
$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);
$handler->override_option(’path’, ‘islove’);
$handler->override_option(’menu’, array(

‘type’ => ‘none’,
‘title’ => ‘’,
‘weight’ => 0,

));
$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,
‘title’ => ‘’,

357

Chapter 12: The jQuery Chapter

‘weight’ => 0,
));
$handler = $view->new_display(’block’, ‘Block’, ‘block_1’);
$handler->override_option(’title’, ‘Browse Literary Pieces’);
$handler->override_option(’items_per_page’, ‘5’);
$handler->override_option(’use_pager’, TRUE);
$handler->override_option(’style_plugin’, ‘table’);
$handler->override_option(’style_options’, array(

‘columns’ => array(),
‘default’ => ‘’,
‘info’ => array(),
‘override’ => FALSE,
‘order’ => ‘asc’,

));
$handler->override_option(’block_description’, ‘Genre browser’);

Running the view by invoking the path ./islove might yield the results shown in Figure 12-13.

Figure 12-13

Implementing the Functionality
In order to implement this functionality, construct another module, called, for example, todoalarm, for
want of a better name. In the directory ./sites/all/modules/todoalarm, create the following two files:

todoalarm.info:

; $Id: $
name = Todo alarm
description = This is a simple jquery + ajax + views based pop-up
alarm based on the results of a view consulted by a timed process.

core = 6.x
package = "Other"

todoalarm.module:

<?php
// $Id: $

/**
* todoalarm module - For Drupal 6
*/

/**
* Implementation of hook_menu().

358

Chapter 12: The jQuery Chapter

*
* This implements the Ajax URL http://example.com/getstatus
* that jQuery function calls with a get in order to see
* if there is love in the world
*/
function todoalarm_menu() {

$items[’getstatus’] = array(

‘title’ => ‘todos’,

‘page callback’ => ‘_todoalarm_ajax_get_status’,

‘access callback’ => TRUE,

‘type’ => MENU_CALLBACK,

);

return $items;

}

/**
* Drupal 5 version of hook_menu implementation:
*

function todoalarm_menu() {
$items[] = array(
‘path’ => ‘getstatus’,
‘title’ => ‘todos’,
‘callback’ => ‘_todoalarm_ajax_get_status’,
‘access’ => TRUE,
‘type’ => MENU_CALLBACK,

);
return $items;

}
*
**/

/**
* Implementation of hook_nodeapi
*
* This sets the timer under certain operations, such as viewing a node
*/
function todoalarm_nodeapi(& $node, $op, $a3 = NULL, $a4 = NULL) {

switch ($op) {
case ‘view’ :

if ($node -> type == ‘literary_piece’) {

// general universal timer code

_todoalarm_set_timer();

359

Chapter 12: The jQuery Chapter

}

break;
}

}

/* Javascript function inserted in page to set timer
/* and define Ajax get function */
/* Invoked by nodeapi hook implementation (see previous) */
function _todoalarm_set_timer() {
drupal_add_js(
’function doit() {
$.get(base_url + "/getstatus", function(status){
if (status == "false") {

var result = confirm("No love!");
if (result) {
//setTimeout(doit, 300000); // five more minutes snooze
setTimeout(doit, 10000); // 10 seconds snooze

}
}
});

}
$(document).ready(function(){
setTimeout(doit, 10000); // check after one minute

});’,
’inline’
);
global $base_url;
// nice way to pass parameters from drupal to jQuery!
drupal_add_js("var base_url = \"" . $base_url . "\";", ‘inline’);
}

/* Callback function installed by hook_menu implementation */
function _todoalarm_ajax_get_status() {
/** Drupal 5 embed view!
$view = views_get_view(’love_letter_detector’);
$todoalarms = views_build_view(’items’, $view);
print drupal_to_js(($todoalarms[’items’])?false:true);
***/
$view_name = ‘love_letter_detector’;
$v = views_get_view(’love_letter_detector’);
//$v = view::load(’love_letter_detector’);
$v -> build();
$v -> execute();
print drupal_to_js(($v -> total_rows)?true:false);
exit;

}

A little explanation for this code:

The todoalarm_menu() function implements hook_menu() and implements the Ajax URL
http://example.com/getstatus that the jQuery function calls with a GET request in order
to see if there is love in the world (i.e., to see if the View returns any nodes including the
word love).

360

Chapter 12: The jQuery Chapter

Next, the todoalarm_nodeapi() function is invoked by Drupal whenever a node is viewed, and
its logic invokes the function _todoalarm_set_timer() if a node of type literary piece is being
viewed.

The todoalarm_set_timer() function adds some in-line jQuery code that defines the function
called every time the timer runs down (doit()) and then sets the timer itself to 10 seconds.

The function doit(), when called, actually calls the Ajax URI defined by the menu callback func-
tion (/getstatus), which was configured to point at _todoalarm_ajax_get_status.

The todoalarm_ajax_get_status function gets the views object based on its name, and builds
and then executes the view. If the result is true, the value true, otherwise false, is returned.
Values are returned (to the JavaScript function invoking the Ajax URI) in JSON format, the lingua
franca of the JavaScript world.

As always, this module is included in the tarball you may download with each chapter. Try it out, per-
haps modifying it here and there.

You can see the results of there being no literary piece with the word love in its title in Figure 12-14.

Figure 12-14

The Firebug console GET entry may be opened here to reveal the false value returned by the Ajax URI.

361

Chapter 12: The jQuery Chapter

Summary
In this chapter, you first delved into the nature of Rich Internet Applications and their capability of
making website applications approximate the agility and ease of desktop applications, then learned
their history and sorted out the terms (DOM, Ajax, AHAH, etc.) often heard in this context. You were
able to learn the architecture of systems leveraging these techniques and understand how many distinct
processes communicated with each other among various servers and application instances to achieve the
required functionality.

Following this, the chapter discussed why Drupal chose jQuery as its own ‘‘Drupal Way’’ JavaScript
library, to be included in every Drupal release. You learned how this brought immense advantages,
together with certain difficulties in having to deal with a very old release of jQuery ‘‘stuck’’ in a given
Drupal release, and how the JQuery Update module provided an excellent work-around in this sense.
You then saw a whole series of concrete examples, capable of being put to good use in future tasks.
And jQuery use was contrasted in the Drupal 5 and 6 releases. A complete example of using the jQuery
Validation plug-in within the context of Drupal 6 was then demonstrated and explained, together with
an additional Ajax example.

All in all, a complex subject was dissected and put to use, and — hopefully — understood clearly, becom-
ing part of the website application arsenal of every reader.

362

Part V

Drupal 7 and the Road Ahead

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Chapter 14: Deploying Your Application as a Drupal Installation Profile

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

From Drupal 6 to Drupal 7
and Beyond

So, where is it all headed? You often hear that Drupal 7 will be ‘‘The One.’’ Drupal 6, as you have
seen, represented a huge gain in functionality compared to Drupal 5, which also represented a huge
gain in contrast to the previous major release, Drupal 4.7.

In this chapter, you will become acquainted with exactly what changed with the presentation of
the Drupal 6 release, and some of the underlying principles guiding Drupal development as it has
progressed from one Drupal release to the next, including Drupal 7. A Drupal 7 feature list will be
presented, and the architectural style of this release will be analyzed. The battle plans of the various
contributed module authors will be reviewed. Finally, you will gain hands-on experience installing
Drupal 7 and look toward a minimalist implementation for the On-Line Literary Workshop.

What’s Changed in Drupal 6?
Every Drupal release comes with a CHANGELOG.txt gleaned from the commit logs, including
new features and bug fixes, all the way back to Drupal 1.0.0., ‘‘Initial release,’’ on January 1, 2001.
The log for each of the Drupal 6.x releases (6.1, 6.2, etc.) brought the following major new features:

A new Schema API, to make it easier to work with databases other than MySQL

jQuery upgrading to jQuery 1.2.6

The Update Status module, which continually checks for core and module updates,
was added to the core

Triggers and actions were added to the core to allow custom workflow development

Support for OpenID

Any node type can now be posted to a Forum

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Performance gains thanks to conditional loading of include files, a JavaScript aggregator,
block-level caching, and a revamped menu system

New HTML corrector filter

Installer now themed, and given additional functionality, with a form to include basic site infor-
mation, the possibility of importing interface translations, as well as the ability to add additional
steps programmatically

Completely revamped theme system to make for easier theming, with an easier configuration
made possible via a new .info file, and modules given the possibility of including template files
(instead of theme_ functions inside the module code) capable of being copied right into a user’s
theme and overridden. Additionally, a new clear-cut pre-process function, as well as theming
support for JavaScript functions

A host of usability enhancements:

JavaScript to manually specify teaser portion of body text in nodes

Sticky table headers (a boon in setting permissions!)

Clean URLs automatically tested via a JavaScript

PHP version and Drupal core dependencies strictly enforced for modules via .info file

Dynamic check of password strengths

Drag-and-drop positioning blocks, menu items, taxonomy vocabularies and terms, forums,
profile fields, and input format filters

PHP filter now abstracted out into a separate core module (disabled by default for security
reasons)

A host of l10n and i18n language improvements:

Support for right to left languages

Language detection based on parts of the URL

Browser-based language detection

The ability to specify a node’s language

Support for translating posts on the site to different languages

Language-dependent path aliases

Automatically import translations when adding a new language

JavaScript interface translation

Automatically import a module’s translation upon enabling that module

Revamped logging system, making it possible to disable database logging (dblog), allowing
modules to re-direct logs to other sources besides the database, for example, to a text file, and
adding eight error levels according to RFC 3164. A new syslog module for monitoring large Dru-
pal installations was also added

Improved PostgreSQL support

366

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

As you have seen, using Drupal 6 provides a smoother and more solid experience overall, when com-
pared to using previous Drupal releases.

Killing the Webmaster
Despite these improvements, in September 2007, Dries Buytaert, the originator of Drupal and the Dru-
pal Community, gave a report entitled ‘‘State of Drupal Presentation,’’ before the Drupal International
Conference held in Barcelona, which I was fortunate enough to attend. The slogan of the report was ‘‘Kill
the Webmaster,’’ a bloodthirsty but user-friendly motto: The idea is that an NGO (non-governmental
organization) or any small or medium-sized business, or a department, section, or business group within
a corporation, should be able to create and maintain a website application enabling their community to
interact around their goals and activities without having to hire a professional who has to be consulted
and depended on to configure and maintain the content of their system. The focus was placed squarely
on that percentage of potential users who had tried Drupal, but had then opted for some other alternative
because of usability issues. Drupal had lost them forever because they had given up on Drupal — they
had come to the conclusion that using Drupal was just too hard. The focus was on how to win over those
kinds of users and the way to do it was by building ‘‘the killer Drupal 7 release,’’ to be built in compli-
ance with the requirements captured from a survey that ran for 30 days and received more than 1,000
responses. In the survey, people prioritized the following:

Better media handling

Moving the content construction kit into Drupal core. CCK, as it is called, has been up till now a
contributed module, which, as you have seen in this book, allows the user to create content types
with custom fields having built-in data types and an assortment of form widgets to match

Moving views, or a similar SQL query and report generator, into core. This would complete
CCK by offering the off-the-shelf capability of listing content items of various types according
to custom-configured and interactive filters and arguments

Moving a WYSIWYG editor into the Drupal core, so that this functionality is available to users
without having to download and install and configure anything (‘‘Kill the Webmaster!’’)

Continue to enhance administration usability, and provide tools for the convenient structuring
and organization of content

Continue to improve performance and reduce the resources required to run Drupal

Automatic upgrading of Drupal core and modules

Improvements in the node access system, so that non-programmers can configure sophisticated
access and security schemes for the data contained in their website application (‘‘Kill the Web-
master!’’)

Comprehensive import and export facilities for content and for configuration

Enhanced Database API (PDO, etc.; see www.garfieldtech.com/blog/drupal-7-
database-plans)

Greater connectivity, so that Drupal can integrate Web Services into the mix, and various kinds
of APIs. Drupal should be semantic Web-aware and ready (RDF support)

Continue to enhance usability in general

367

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

The overall objective is for Drupal to be as easy to use as the ‘‘easier systems’’ while maintaining the
power and flexibility of a web application framework.

This kind of aggressive blueprint for continual progress and evolution, at the risk of losing backward
compatibility and obliging Drupal users to constantly update and upgrade (a significant budget in itself),
is the Drupal hallmark. Many people new to Drupal constantly question it, saying that they finally learn
their way around, only to have everything changed on them brutally every 12 months or so.

But Drupal is only guilty of placing itself squarely in the software industry mainstream — no more, no
less. Like continual testing, continual updating and upgrading are part and parcel of all serious software
development and deployment because:

There is a realistic need for continued security updates, something at which the Drupal commu-
nity excels.

The Drupal community reflects the full power and creativity of the Open Source business
model and places itself squarely on the crest of the wave of the current usability and paradigm
revolution.

Drupal refactored continually can open itself to all kinds of developments, not the least among them
being the tendency toward open, collaborative, stable, and fully usable website applications capable of
interacting with a host of APIs and options for data persistence (i.e., through Web Services rather than
through a local database).

Understanding the Drupal Blueprint
from Drupal 7 On

The first news to emerge in Drupal 7 development, however, was not this or that feature, per se, but
rather an explosion in the importance placed on testing. ‘‘Not because Drupal is buggy,’’ wrote Dries Buy-
taert while blogging on the Drupal 7 timeline in March 2008 (http://buytaert.net/drupal-7-timeline),
‘‘but because it makes release management easier, because it leads to better APIs, and because it encour-
ages change and experimentation — something the Drupal community really takes pride in and which is
critical to our long term success.’’ In other words, everything was based on a foundation of best practices
in software engineering. The more testing coverage (percentage of lines of codes actually tested), the
longer development could go on, and the more features that could be included in the Drupal 7 release at
code freeze. The aforementioned survey called for a major Drupal release every 12 months, and so the
original idea was to have the code freeze in July 2008, based on a tentative release date of March 2009.
However, with testing, Dries added that the code freeze could be postponed to November 2008 without
requiring more than three months for debugging and stabilization, instead of the usual seven months
that would have been required with less test coverage.

All that was needed was the adoption of a good lightweight test framework (perhaps Simpletest —
http://simpletest.org/) and the mobilization of a high percentage of the Drupal community to partic-
ipate in whittling down the issue queues and preparing more and more code for committing in time for
the code freeze.

368

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Indeed, the Simple Test Framework for Drupal (http://drupal.org/project/simpletest) has been
in place since October 2004, but as a contributed module. Excitedly, the document home page reads,
‘‘SimpleTest 7.x development has been moved to core,’’ which explains why there is no Drupal 7 version.

This is a great step forward in the production of reliable software, proving once again that Open
Source software can often be more than a match for proprietary software that can never mobilize
hordes of enthusiasts to test things from top to bottom. But also, the extensive documentation
(http://drupal.org/node/291740) explains how every module author can incorporate unit and
functional testing right into the module itself. Later on in this chapter, you will do just that.

This is another reason why Drupal can afford and has every right to progress at neck-breaking speed.

To a great extent, it is a decided advantage that Drupal moves ever forward . . . the downside is, as
mentioned, that maintaining and upgrading has to become a religious act, in all senses of the word,
and not keeping your site as up to date as possible means painting yourself into a corner and creating a
certain re-engineering need in the not-so-distant future.

It bears repeating that updating and upgrading is right up there on any Drupal website application
budget, but that the plus side is that just by using Drupal, you get a whole security team, for example,
working for you.

Making the Historic Decision to Postpone
the Drupal 7 Code Freeze

In May 2008, Buytaert Dries made an important announcement:

‘‘Drupal 7 will be ready when it is ready, and more importantly, when the Drupal community
is ready for it. At no point, release dates are set in stone, and I’ll always continue to listen to
input and zeitgeist from the community at large I’m willing to adjust release schedules,
but I’m not willing to slow down the rate of change and innovation.’’

Then, in June 2008, Dries wrote:

‘‘While we have made incredible progress with the test infrastructure as well as implemented
a dozen of usability improvements, we’re still light on feature improvements (such as fields in
core). Combined with the late arrival of CCK and Views, and the many Drupal 6 books that
are currently being written, it sounds best to postpone the code freeze a little longer. Given the
current state of things, the proposed July 15 deadline seems a bit too aggressive to my liking.’’

The decision was wisely made not to catapult the active Drupal community and entire user base toward
a completely revamped release without first having exhausted all the possibilities of the new Drupal
6 release, to put it through its paces and glean all possible lessons learned in order to allow Drupal to
continue to grow as it has always done, in an organic and concrete fashion.

Maturity and intelligence also forge the Drupal hallmark.

369

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Listing the Drupal 7 Features
Even though you may be using a much earlier release of Drupal and may not even have gotten around
to upgrading some of your sites to Drupal 6 yet, since you are using Drupal, it behooves you to know
what the future holds, where Drupal is headed, and what benefits are in the offing — which you can
appreciate from the Drupal 7 features listed here.

Whether Drupal 7 suffices to ‘‘Kill the Webmaster!’’ remains to be seen. However, the following table
gives a partial list of what had been achieved at the time of writing, and even so, it represents and con-
tains major user-friendly enhancements and the removal of many fossilized quirks.

Drupal 7 Feature List

Feature Description

Database Fully rewritten database layer using PHP 5’s PDO abstraction layer,
built primarily on an object-oriented paradigm
Query builders for INSERT, UPDATE, DELETE, MERGE, and SELECT
queries
Support for master/slave replication, transactions, multi-insert queries,
delayed inserts, and other features

Security Protected cron.php — cron will only run if the proper key is provided.
Much stronger password hashes compatible with the Portable PHP
password hashing framework
A pluggable password hashing API supporting alternative hashing and
authentication schemes, making it much easier to integrate Drupal
authentication into existing and standards-based Enterprise and
organizational authentication systems

Usability Drag-and-drop positioning for input format listings
Drag-and-drop positioning for poll options
Provided descriptions for user permissions
Removed comment controls for users
Removed display order settings for comment module. Comment
display order can now be customized using the Views module.
Additional features to the default install profile, and implemented a
‘‘slimmed down’’ install profile designed for developers.
Image toolkits are now provided by modules (rather than requiring a
manual file copy to the includes directory).
Added an Edit tab to taxonomy term pages.

News aggregator Added OPML import functionality for RSS feeds.
Optionally, RSS feeds may be configured to not automatically generate
feed blocks.

Search Added support for language-aware searches.

Testing A built-in test framework and tests

370

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

In addition, Drupal 7 has made the following changes to module, registry, and Theme system features:

Drupal 7 Changes

Change Description

Refactored ‘‘access
rules’’ component of
User module

The User module now provides a simple interface for blocking single IP
addresses. The previous functionality in the User module for restricting
certain e-mail addresses and usernames is now available as a
contributed module.
Furthermore, IP address range blocking is no longer supported and
should be implemented at the operating system level.

Removed throttle
module

Alternative methods for improving performance are available in other
core and contributed modules.

Added code registry Using the registry, modules declare their includable files via their .info
file or by virtue of hook_menu, allowing Drupal to lazy-load code as
needed, resulting in significant performance and memory
improvements.

Theme system Converted the bluemarine theme to a tableless layout.

Whether this suffices to ‘‘Kill the Webmaster!’’ remains to be seen. However, this is just a partial list of
what had been achieved at the time of writing, and even so, it represents and contains major user-friendly
enhancements and the removal of many fossilized quirks.

Drupal 7 Architectural Style
Representative of the exciting new Drupal architecture is the new Database API, exclusive support for
PHP 5 and later (cutting the shackles that bind and limit to PHP 4), and intense usability concerns.

Drupal 7 Database API
The Drupal 7 Database API describes itself right off the bat as being ‘‘built primarily on an object ori-
ented paradigm.’’ It will be instantly familiar to all who have used similar packages in object-oriented
languages such as Java or even in scripting languages such as Perl or Ruby. Some examples from the
extensive documentation published from very early on in the project make this clear:

<?php
$conn = Database::getActiveConnection($target);

$result = $conn->query("SELECT nid, title FROM {node}");

$result = db_query("SELECT nid, title FROM {node} WHERE type = :type", array(
‘:type’ => ‘page’,

));

371

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

$result = db_query("SELECT nid, title FROM {node}");
foreach ($result as $record) {

// Do something with each $record
}

$record = $result->fetch(); // Use the default fetch mode.
$record = $result->fetchObject(); // Fetch as a stdClass object.
$record = $result->fetchAssoc(); // Fetch as an associative array.

?>

Built-in support for master/slave database replication:

<?php
$result = db_query("SELECT nid, title FROM {node}", array(), array(

‘target’ => ‘slave’,
));
?>

But above and beyond the ease and familiarity for experienced developers, the main thing is that the
whole API is built squarely on the industry-standard PDO library available in PHP. In this way, drivers
may be written for different RDBMS (as quoted from the Database API documentation):

‘‘Each driver consists of several classes derived from parent classes in the core database system.
These driver-specific classes may override whatever behavior is needed to properly support
that database type. Driver-specific classes are always named for their parent class followed
by an underscore followed by the driver name. For example, the MySQL specific version of
InsertQuery is named InsertQuery_mysql.’’

Going PHP 5
Another exciting aspect of Drupal architecture is that Drupalistas like Palantir’s Larry Garfield pro-
moted, from very early on (2006–2007), the whole struggle against the death embrace of PHP 4 and its
crippling limitations as part of an ambitious plan that not only catapulted Drupal into the front line of
CMS frameworks, but actually had a huge impact on the entire PHP community as a whole.

This was done first of all as a signal discussion in the Drupal development mailing list and on IRC, and
then, via an interproject and interhosting dialog with other major projects and hosting companies to see
who would be on board to come out with a pre-announced date after which PHP 4 would no longer be
supported, as an influential website, ‘‘GO PHP5.’’

Not only did Drupal free itself of PHP4’s shackles, but it also spearheaded an influential movement
within the PHP community and was very successful at making PHP go from a scripting language free
for all to a serious development contender, as Drupal advanced from ‘‘script’’ to serious CMS website
development framework.

Considering Usability Concerns, Usability Sprints
(Death to the Webmaster!)

372

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Usability in the Drupal administration and configuration user interface has often been cited as one of the
essential stumbling blocks preventing a wider and more deserved distribution of the Drupal CMS Frame-
work. The creative ‘‘geeks’’ who have worked so closely together over the years may have overlooked,
or postponed, the question of usability in favor of packing in more functionality.

Although the community supported greater functionality and constant refactoring has constantly
improved Drupal quality, the hopes of making Drupal more accessible ‘‘to the masses’’ have pushed
usability to the fore. You will be informed here of a series of usability studies that were carried out to
specify exactly what needs to be changed, of the existence of a group regularly meeting to work on this
at http://groups.drupal.org. They speak of their hopes for ‘‘usability sprints,’’ involving their success
at attracting Drupal developers toward work to be done in this area in a massive and concentrated
fashion, in order for the objectives to be met.

Also explained are the face-lifting currently under way for http://drupal.org itself, and last, but not
least, of the spectacular achievements of the Drupal Documentation Team.

Studying Usability
In June 2007, the Interaction Design and Information Architecture program at the University of Balti-
more and a team of eight graduate students in the Research Methods class, taught by professor Kathryn
Summers, completed a usability study on Drupal (http://drupal.org, ‘‘News and Announcements’’
section). The very fact that this and other studies have taken place show the seriousness of the Drupal
community in gearing up for ‘‘The One’’ — Drupal 7 — as a killer application. Instead of the usual geek
disdain for usability, here was a community open enough to explore, several times and with experts,
the weakest link in the chain: the accusation that Drupal is powerful, Drupal is flexible, but Drupal is
too damn hard to use. If Drupal emerges as the leader in its field, it will be because of this honesty and
courage.

In a nutshell, the core usability problems with Drupal, the findings in this and in other studies, can be
summarized as follows:

Better Support for Editing Content in Drupal — This involves a WYSIWYG content editor
that doesn’t require a rocket scientist to install, but instead comes directly with a plain Drupal
installation.

Easier Handling of Input Formats — This is for nontechnical users to easily balance power with
security and configure the kinds of HTML tags and media permitted in the various different con-
tent types that are accessible to the various user roles interacting with the system. An example,
here, is the many posts to the support forum complaining of users including images in posts, but
not being able to see them when visualizing the page.

An input format that filtered out the tag was in place. This tag and others needed to be
added to the list of allowable, safe tags, but it was difficult to find where in the administration
soup this could be done, and then, it was not very intuitive on exactly how to get it done.

Simplification of the Geeky Nomenclature Used to Refer to Content and Content Items: Node,
Post, Story — The general conclusion is that the built-in content type ‘‘story’’ should be changed
to ‘‘article,’’ and that the descriptions should make it very clear what the differences are between
that and, say, ‘‘page’’ (for static and/or information architecture building blocks, or where more
metadata is required), or ‘‘book’’ (which allows for section and chapter-like hierarchies).

373

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Simplify and Rethink the Administration Areas, Which Most Usability Test Subjects Con-
sider Overwhelming — Make sure the administration area is seen as separate from the content
areas.

However, just because WordPress does it this way is no reason for Drupal to do it this way, and
there is some controversy on this point. Many users are highly attracted toward ‘‘click to edit’’
and ‘‘click to configure’’ areas; the Zen theme, for example, greatly enhances this experience.

Several Evaluators Wanted a Step-by-Step Instruction on How to Start — This should include
how to get started, a Help API, or even the design of a user experience (UX) capable of being
self-explanatory.

Change the ‘‘Where Did My Content Go’’ Phenomenon in Drupal — This phenomenon
occurs when you create content but can’t find it. And when you do (Administer � Content
management � Content), you can filter the content items (nodes) in various ways and apply
some bulk operations on a page-by-page basis, but the interface and functionality here have a lot
of room for improvement (not to mention being able to find it in the first place). At a minimum,
you should be able to carry out bulk operations on all posts of a given content type (i.e., put
revision control in place, publish or unpublish, promote to front page, or demote from front
page).

Determining What a Teaser Is — Drupal 6 sports a cool, graphic, and interactive manner of sep-
arating out the teaser from the body itself, but many first-time users of Drupal have a hard time
trying to figure out just what a teaser is in the first place.

Blocks Require a Preview Feature to Show How They’ll Appear in Regions Once Created — A
user could easily create a blogroll or list of references, or an author information block with an
image, using a WYSIWYG content editor. But after creating the block, you could have a hard
time seeing what it might look like placed in different regions.

The Form for Editing a Post Is Very Confusing — What does a first-time user (or any user, actu-
ally) expect to find when he clicks ‘‘Post settings,’’ for example? Is this the ability to add fields?
Why wouldn’t it? ‘‘How do I add new fields?’’ is a common problem, and something that is way
too difficult to find. Gains have been made in Drupal 6 in the actual Wizard you go through
to create a field, but there is still a lot of room for improvement before dependencies on Web-
masters can be eliminated. Even when users did find the Administer � Content management �
Content types � Edit {a content type}, the Add Field tab does not exactly leap out at you, and
several evaluators ‘‘clicked every other link’’ but that one in trying to accomplish this feat.

The Whole Concept of Business Object Creation Was Not at All Obvious or Intuitive — In
fact, it is indeed one of the strongest points in favor of adopting. Nonetheless, some usability test
subjects thought that ‘‘content type’’ was a field that could be added.

The Administration Categories Need to Be Reworked — When faced with the basic admin-
istration categories (Content Management, Site Building, Site Information, User Management,
etc.), where would you go to create a business object or a forum? Many searched in vain in Site
building, perhaps the most commonsense of those available.

Where Would You Look, Also, to Set Access Control? — In Content types? What about ‘‘access
rules’’?

There Were Problems about Understanding What Taxonomy Even Is — This includes its
power, how it can be used in conjunction with content types, and how to improve usability with
vocabularies of taxonomy terms when you do understand this.

374

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Usability Group
The Usability Group (http://groups.drupal.org/usability) is a serious-minded and highly orga-
nized team who recognize the fact that they need to organize separately from the developers. Whereas
developers may not have usability front and center when dealing with core functional issues, such as
the Database API, or how to optimize the menu system, someone has to in order for gains to be made
here. Born themselves at a usability sprint at DrupalCon 2008 in Szeged, they have assembled the ‘‘top
10’’ usability areas that must be dealt with for Drupal 7 and have organized sprints (or concentrated
effort brought to bear on the problem, benefitting from everyone being together at the conference) to deal
with them.

For an Open Source community, trying to overcome stumbling blocks over operating system, propri-
etary software tool compatibility issues, and candidate Web 2.0 replacements, it is an organizational
effort striving for user input and striving to get the necessary attention of the leading developers in the
community as well because without developer awareness, the necessary code will not get written. This
group, an intense confluence of developers, word-mongers, graphic designers, and users, could very well
be the envy of large corporations and could hold the key to the success of Drupal 7.

Their top issues as seen through the eyes of users are:

Where did the help go? There is a great need for context-sensitive help. Furthermore, some felt
the help useless when they did find it. And the part of help that did help was confusing in its
terminology, which may not even have matched all the corresponding labels. What’s a parent
item?

Do all the helpful links on the Welcome screen (the one that appears before any content is
created) always have to disappear as soon as content is created? Typical reaction when the
administrator creates her first node, or post, or story: ‘‘Where did the Welcome page go, with its
helpful links?’’

Where’s the overview on how the whole thing works?

What’s the difference between an article (thank goodness it’s not called a story anymore) and a
page?

What are access rules? Is that permissions to access content?

How do we really deal with the need to specify and configure content types, on the one hand,
and content creation, management, and edition, on the other? To what extent should they be
separate, or conveniently meshed, while being clear, straightforward, and simple to use?

Teaser, summary, what?

There is an overwhelming administration interface. We have to go to too many places to
accomplish similar tasks, or even a single task. ‘‘There are places where the admin interface
works fine if you want to delete one or two items, but becomes a nightmare if you need to delete
fifty’’ — Drupal user starbow.

‘‘Where did my content go?’’

How do you enable the built-in WYSIWYG editor? You mean there isn’t one? But: ‘‘All most peo-
ple need is a few simple buttons that wrap their content in the appropriate tags and allow them
to upload and insert images, audio, and video. This functionality should be part of the default
installation of Drupal. If you want an example of a good interface for publishing content, just
take a look at the page for creating a post in WordPress, especially the HTML view’’ (quoted
from Drupal user marketanomaly).

375

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Is this an administration page, a content editing page, or is it how the world sees my site?

How do you make it easier to specify and configure content types?

How do you eliminating the need for (too much) scrolling up and down?

What does Site building really mean? Is it concerned with development, configuration, or pure
content management? Is it the place where users expect to find where to add fields to forms and
content types?

How do you improve usability in the browsing and management of SEO-friendly path aliases?

The Usability Team is cleverly leveraging the built-in issue queues that are part and parcel of drupal.org
and Drupal 7 development, to channel these concerns toward the developers and graphic design people
capable of solving them.

drupal.org Face-Lifting
In parallel with this effort, drupal.org itself is undergoing a complete re-design. A special selection
process finalized in the awarding of the task to a top design and information architecture firm, and
they involved themselves heavily in finding feedback from the community as raw material for their
process. They are discovering all the user roles in terms of different community types that interact with
drupal.org, and the use cases governing that interaction. At the time of writing this book, this process
was still in the early stages, but gaining enormous momentum.

A much improved drupal.org, the fundamental tool for both using and building Drupal, will no doubt
emerge as the fruit of so much effort.

Documentation Team
The whole problem of documentation is being faced squarely and with a great deal of awareness.
Attempting to strike a balance between crowd sourcing and expertise in the development and acces-
sibility of the Drupal handbooks, a whole community-based team, with its own e-mail list, IRC group,
and other forms of communication and collaboration, is focusing its efforts on this dire need.

Projecting Drupal 7 Contributed Module
Battle Plans

Building on the solid base of Drupal 6 and the exciting new approaches taken in Drupal 7, the true value
and WOW factor of Drupal 7 can only be made fully apparent by projecting what it will be like in terms
of what module-level features may be supported by the new code base. In other words, Drupal 7 has
become an incredible source of motivation and excitement among module developers.

From aggregators to Xbox aggregation, the whole atmosphere of creativity and refactoring has sparked
a veritable movement. And modules are encouraged to be based on incredible engineering, involving
flexibility, robustness, and extensibility. Take the aggregation module and its architecture commented by
Alex Barth in the Development Seed blog (www.developmentseed.org/blog/2008/aug/06/improved-
aggregator-drupal-7-whats-under-hood).

There is also a tendency for individual modules to develop synergy and work together. Take the Token
module, for example, which exposes the hidden metadata and structure of a content item to the Content

376

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Item Editing Form. Using the Node Title module, for example, one can select from all fields and metadata
of a module to automatically generate its title from a formula made up of these tokens. For example,
‘‘[field-make] [field-model] [field-year] Roundup’’. And the Pathauto module also uses tokens to
enable the administrative configuration of formulas upon which to base the SEO-friendly URL generation
of content items on a semantic basis.

This is proof of a growing maturity in the framework. In preparation, many modules underwent a com-
plete rewrite for Drupal 6, something that delayed the production-ready adoption of that release, but
which has laid an incredible foundation. Both the Content Construction Kit and Views, for example
(which will be in the core, for the most part, with the Drupal 7 release), were completely rewritten from
the ground up. From this perspective, the groundwork and implementation of Drupal 7, not only in core,
but in the hundreds of contributed modules that extend its functionality enormously and make for the
versatility of the framework, have been literally years in the making.

The fact that this is an Open Source community–based project that owes its quality to the fact that
development is distributed rather than obeying some ‘‘master plan’’ (that is, Bazaar- rather than
Cathedral-based), needs to be stressed in these contexts. Those hoping that more rather than less
functionality gets included in Drupal core should participate, even just by testing and providing problem
descriptions and perhaps patches, as much as possible. The greater the community participation, the
greater the amount of functionality stable enough to be included in the core when Drupal 7 is released.

Installing Drupal 7
At the time of this writing, there has been no Drupal 7 release of any kind, and the only way of installing
it is either by downloading a tarball snapshot or installing via CVS by checking out HEAD. The latter
is highly recommended. The initial CVS checkout statement might look a bit cryptic and formidable,
but afterward, a simple sweet and short CVS update statement is all you will need to keep abreast of
up-to-the-minute development.

In order to create your litworkshop-7 document root, execute the following command from a parent
directory:

$ cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout -d
litworkshop-7 drupal

Since no release is specified, HEAD is assumed.

In other words, these instructions will be the same for Drupal 8, 9, and beyond, before they are released,
that is, while they are in active development. Of course, even though developers understand that Drupal
cannot migrate its code base from CVS to a more modern version control system overnight, one would
hope that beyond Drupal 7, or at least before Drupal 9 becomes a tangible possibility, there will be a
migration to SVN or Git or some other more widely adopted present-day alternative.

Henceforward, in order to update your installation after finding out about important development news,
simply change the directory to the document root and execute the following command:

∼litworkshop-7 $ cvs update -dP

Couldn’t be simpler, could it?

377

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

In case you think that using the command line is only for geeks or is old hat, or
passé, new developments highlight the fact that in many cases, it is the easiest, most
natural, and certainly the most efficient way to go. In early Fall 2008, Firefox released
its Ubiquity add-on, ‘‘an extension that allows for the use of dynamic commands in
Firefox.’’ This lends a whole new meaning to the expression, ‘‘have the world at
your fingertips.’’ For example, do you need to translate text you have selected on a
page you are browsing? Simply type the add-on hot-key, and then type tr . . . Voilá.
Need to calculate something real quick? 2 + 2 = 4! Just like the command line!

Developing a Minimalist On-Line Literary
Workshop in Drupal 7

Instead of attempting to upgrade the current Drupal 6 version of the On-Line Literary Workshop, let’s
quickly attempt to develop a minimalist version based on Drupal 7.

Create a database and database user for this installation either on the command line or by using
PhpMyAdmin, or similar.

It bears repeating: To create a new MySQL database and database user all in one, go to Privileges, ‘‘Add
a New User,’’ and remember to check the ‘‘Create database with the same name and grant all privileges’’
radio button option before hitting the Go button. And you are all set to go.

1. If you are working on your own workstation or laptop, or virtual or dedicated server, create
a virtual host, or if you are working in a shared hosting environment, create a new subdo-
main, called litworkshop7, and point your browser to the document root.

On a Ubuntu workstation or laptop, one way is to simply add the following to
/etc/apache2/sites-enabled/000-default:

<VirtualHost *>
ServerName litworkshop7.hostname
DocumentRoot /home/victorkane/Work/Wiley/litworkshop-7
<Directory "/home/victorkane/Work/Wiley/litworkshop-7">
Options Indexes MultiViews FollowSymLinks
AllowOverride All
Order deny,allow
Deny from all
allow from all

</Directory>
</VirtualHost>

2. Then perform:

$ sudo apache2ctl restart

3. Add litworkshop7.hostname to /etc/hosts in order to complete the pseudo-subdomain in
your development environment.

378

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Your browser now points to the installation screen, which asks you to select an installation
profile, as in Figure 13-1.

Figure 13-1

4. Leaving the ‘‘Drupal (experts only)’’ option, exciting as it is, for another time, select Dru-
pal, and press the ‘‘Save and continue’’ button. On the next screen, click ‘‘Install Drupal in
English.’’ More than likely, you will see the error message shown in Figure 13-2.

Figure 13-2

379

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

5. Well, the Webmaster hasn’t been dispatched quite yet. If you have to make the file
writable, why not make the directory writable and have the install process take care
of the whole thing? OK, gripes aside (reminder to place in issue queue), copy ./sites/
default/default.settings.php to ./sites/default/settings.php, and make it writable by
the web server. Also, create the ./sites/default/files directory, and make it permanently
writable by the web server.

The steps you could take on a Ubuntu workstation would be the following:

1. From the document root:

$ mkdir sites/default/files
$ sudo chown www-data:www-data sites/default/files
$ cp sites/default/default.settings.php sites/default/settings.php
$ sudo chmod 666 sites/default/settings.php

‘‘666’’ means Read + Write privileges for owner, group, and others. ‘‘www-data’’ is the
default user for the Apache HTTP server process. However, you can easily configure per-
missions and other settings using your favorite file manager, as shown in Figure 13-3
(Dolphin/Konqueror in Ubuntu/Kubuntu).

Figure 13-3

380

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

2. After completing the installation process, you will ‘‘seal up’’ the settings.php file by remov-
ing Write permissions for all users except Owner:

$ sudo chmod 644 sites/default/settings.php

3. Click ‘‘Try again’’ until you are presented with the Database configuration screen familiar to
the Drupal installation process. Click ‘‘Advanced options’’ if you need to specify a remote
host, if your database is on a different server, if you need to specify the database port, or if
you wish to specify a table prefix so that multiple applications can share the same database.
Otherwise, fill in the Database name, username, and password; and click on the ‘‘Save and
continue’’ button.

4. You may now configure the site, as in the Drupal 6 installation process, after which, click
on the ‘‘Save and continue’’ button. You should see the Drupal installation complete screen,
with an error message if Drupal could not send an e-mail notification to the newly created
Admin user. Click on the ‘‘Your new site’’ link.

If you are installing Drupal off-line, then it is important that you do not select
‘‘Check for updates automatically’’; otherwise, you will be subjected to
interminable delays as Drupal tries to connect to drupal.org in order to ascertain
the update status for the core and modules. You can enable the Update Status
module at any time, when you are going to be working on-line.

5. Go to Administer � Site configuration � Site information, and establish the Site name
(On-Line Literary Workshop 7) and slogan (Publish or Perish!).

Drupal 7 has now been successfully installed!

Creating Literary Pieces
The main goal here is to create the Literary Piece content type and simply have it displayed automatically
on the front page for now.

1. Go to the main Administration page. The first thing you notice is that the Content Types
link (where you manage the content types that come with Drupal, now Article and Page, as
well as the ones you create yourself), which used to be on the left-hand side in the Content
Management category, has now been included on the right-hand side in the ‘‘Site build-
ing’’ category (see Figure 13-4). This is in answer to the usability concerns mentioned in that
section earlier on in the chapter.

2. Go ahead and click the ‘‘Content types’’ link. You can see the off-the-shelf content types
listed there, Article and Page (as opposed to Story and Page in Drupal 6 and earlier). Click
on the ‘‘Add content type’’ tab.

381

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Figure 13-4

3. Type Literary Piece in the Name field, and literary_piece in the Machine name field. Type
A literary piece a member submits for critique or for possible submission to publications
into the Description field.

4. Open up the ‘‘Submission form settings’’ section. Leave Title in the Title field label field, and
instead of removing Body from the Body field label field as you have done up till now, go
ahead and change its label to Text by typing Text in the body field label field. This is because,
unfortunately, at the time of this writing, it is not yet possible to add fields to a custom con-
tent type. This functionality is expected shortly in the core in Drupal 7. For now, leave the
Workflow and Comments sections at their default values, and click on the ‘‘Save content
type’’ button.

5. Go to Create Content, and click on the Literary Piece link. Create a few literary pieces. Then
click on the site name in order to return to the front page, and you should see something like
Figure 13-5. Not very exciting, to be sure, but we are already running Drupal 7!

Once content types can have fields added to them in Drupal core, it is expected that Views will quickly
follow (without the User Interface, which will still be available as a contributed module). Then, it will be
possible to create business objects and listings, all without installing any contributed modules at all.

382

Chapter 13: From Drupal 6 to Drupal 7 and Beyond

Figure 13-5

Summary
In this chapter, you have met ‘‘The One’’ — the rock-solid, dependable, powerful and extensible, hugely
usable off-the-shelf, killer CMS Framework application, as a community at work, as a blueprint, as a
prototype, and as the basis for a minimalistic but fully functional application. You have been introduced
to the concerns and sources of inspiration as nothing less than the elimination of dependencies on the
tech-savvy ‘‘Webmaster’’ who is necessary for changing even a comma on a site’s content, and the con-
cerns that first-time users find Drupal not only powerful, but easy to use: easy enough, that is, to stay
with Drupal and to choose it definitively over the competition. And for good reason. You have also seen
how this effort is anything but cosmetic, or even confined to the presentation or usability layers (e.g.,
the inclusion of off-the-shelf WYSIWYG editor) having far-reaching consequences in terms of a complete
architectural refactoring effort spanning, indeed, several years, and exemplified by the object-oriented
paradigm used in the new Database API, on the one hand, and the Views module, on the other. The
inclusion and definitive incorporation of at least basic Views and Content Construction Kit (fields can be
added to forms and content types) components, together with the new Database API, for example, show
a slow, evolutionary, but definitive trend toward overcoming complexity explosion breakdown via the
gradual and case-proven adoption of the object-oriented paradigm itself.

383

Deploying your Application
as a Drupal Installation

Profile

The goal of this chapter is to comply with the tasks and user stories outlined in the Deployment
phase of our project plan. The best way to deploy a website application based on Drupal is by
creating an installation profile, and by leveraging the Advanced Help module for context-sensitive
help and training.

In the case of the On-Line Literary Workshop, the project you have been building by working your
way through this book, I have actually created a downloadable installation profile on the Drupal
site, as a way of giving back to the community, so that others may use and help improve the project,
and, as always, as a way of obtaining feedback from the community on actual use and thereby
enhance quality.

In this chapter, you will learn how to create an installation profile (a.k.a. distribution profile) for the
On-Line Literary Workshop, how to use it as a deployment tool, and how to use the Advanced Help
module as a way of providing on-line context-sensitive help for your users.

Leveraging the Advanced Help Module
You saw earlier that the Views 2 module, deployed in Drupal starting with release 6.x, optionally
uses the Advanced Help module to provide context-sensitive help in the form of stand-alone HTML
files accessible via a question-mark icon in all sections of its interactive pages.

Earl Miles, the creator of Views, Panels, and Nodequeue, did not artificially bind his new Help
system to the Views module, but instead thoughtfully abstracted it out into a module in its own
right, and explains in the documentation that any module can use it.

Chapter 14: Deploying your Application as a Drupal Installation Profile

‘‘Although no general help is available,’’ there is a breadcrumb on every pop-up Help window, whose
root is Help. Clicking that link will display a list of modules implementing their own Help system,
including the Help module itself. Among the modules supporting help is Advanced Help, which pro-
vides valuable assistance. The section ‘‘Implementing the On-Line Literary Workshop Help System’’
explains how any module may easily provide its own context-sensitive help.

Analyzing the Components of the Views 2 Help System
If you go to Administer � Site building � Views and the Advanced Help module is enabled, you will
see a series of question-mark icons next to each entry in the listing of available views on the system, all
of which point to the Views-type pop-up Help entry. When you edit a view, for example, love_letter_
detector, you will see that each section has a question-mark icon. For example, clicking the icon found in
the Relationships section brings up Help � Views �What is Views? � Relationships.

Following what is succinctly explained in the Advanced Help module help (Help � Advanced help �
Using advanced help), any module wishing to implement Advanced Help must create a subdirectory,
into which an .ini configuration file is placed, along with help-specific HTML, CSS, and image files.

Accordingly, a visit to ./sites/all/modules/views detects the presence of a subdirectory ‘‘help,’’ in which
can be found a views.help.ini file, together with a host of HTML files, plus a subdirectory of images files.

You can gain insight by studying the Help � Views help index window (see Figure 14-1) in comparison
with the following initial fragment of the views.help.ini file:

[about]
title = "What is Views?"
weight = -40

[getting-started]
title = "Getting started"
weight = -45

[view-type]
title = "View types"

[display]
title = "Displays"
weight = -30

[display-default]
title = "Default display"
parent = display
weight = -20

[display-page]
title = "Page display"
parent = display
weight = -15

386

Chapter 14: Deploying your Application as a Drupal Installation Profile

[display-block]
title = "Block display"
parent = display
weight = -10

[display-attachment]
title = "Attachment display"
parent = display

[display-feed]
title = "Feed display"
parent = display

Figure 14-1

Planning the On-Line Literary Workshop Help System
You have already created a litworkshop module as a utility module to place various elements, including
jQuery support functions. That will be the place to house the Help system, in a subdirectory help.

As an example, you can provide a clickable on-line Help icon for the title field of the Application form,
which has already been embellished with a jQuery validation component.

There will be one entry concerning the Application Form in general, and children help files for
various topics.

387

Chapter 14: Deploying your Application as a Drupal Installation Profile

Implementing the On-Line Literary Workshop Help System
Creating a custom Help system forms an important part of the deployment process, since on-line,
context-sensitive help will greatly enhance the user experience. Thanks to the Advanced Help module,
created by Earl Miles for the Views 2 module Help system and then abstracted out into its own module
as a stroke of genius, it is quite straightforward to implement. You first create an .ini file in a directory
called help inside your module structure (i.e., ./sites/all/modules/your module/help). This .ini file will
have one entry for each Help page, which have to be written in basic HTML with any HTML editor. The
last step is to insert the links to these pages together with a ‘‘?’’ icon into the proper contexts throughout
your website.

Creating the .ini File
Create the directory ./sites/all/modules/litworkshop/help, and place the following .ini file in this
directory:

[about-litworkshop]
title = About the On-line Literary Workshop
file = about-litworkshop
weight = -10

[applying]
title = Why it is necessary to apply to Join the On-Line Literary Workshop
file = applying
parent = about-litworkshop
weight = 1

[application-form]
title = How to fill out your application form
file = starting-group
parent = about-litworkshop
weight = 2

[getting-started]
title = Getting started
file = getting-started
weight = 1

[joining-group]
title = Joining a literary affinity group
file = joining-group
weight = 2

[starting-group]
title = Starting your own literary affinity group
file = starting-group
weight = 3

Creating One HTML File for Each Entry
Each Help page is written in pure HTML and corresponds to a single entry in the .ini file, as mentioned
above.

388

Chapter 14: Deploying your Application as a Drupal Installation Profile

A file listing of the help subdirectory for the On-Line Literary Workshop module is:

litworkshop/sites/all/modules/litworkshop/help$ ls
about-litworkshop.html getting-started.html starting-group.html
application-form.html joining-group.html
applying.html litworkshop.help.ini

Each file consists of pure HTML text (no need for <HTML>, <HEAD>, or <BODY> tags):

litworkshop/sites/all/modules/litworkshop/help$ cat about-litworkshop.html
<p>
The On-Line Literary Workshop is a creative social network oriented
community center where all those who are interested in getting lots
of practice at writing and critiquing, for fun and profit, as well

as publishing their best literary pieces, are welcome.
</p>
<p>
Publishers hoping to find new talent as well as a place to publish an
on-line literary magazine, are also welcome members of the community.
</p>

Theming in the On-Line Help Icon
Now, add a theming function for the form, and theme in a clickable on-line Help icon pointing to
the module’s on-line Help. As you remember from the jQuery chapter, the validation system was
implemented via hook_form_alter by intercepting the rendering and modifying the application form
itself. Now, you can add a single statement to add in the little clickable Help icon that invokes the new
context-sensitive help item. According to ‘‘Using Advanced Help,’’ the following PHP statement will
embed a help link:

$output .= theme(’advanced_help_topic’, $module, $topic);

Our complete hook_form_alter function now looks like this:

function litworkshop_form_alter(&$form, &$form_state, $form_id) {
switch ($form_id) {
case ‘application_node_form’:

//Load jQuery Validation plugin
$path = drupal_get_path(’module’, ‘litworkshop’);
jquery_plugin_add(’metadata’);
jquery_plugin_add(’validate’);
//drupal_add_js($path . ‘/javascript/do_validate.js’);
drupal_add_js (
‘$(document).ready(function(){

$("#node-form").validate();
}); ‘,

‘inline’);
// Specify how to register each field.
$form[’title’][’#attributes’] = array(’class’ => ‘required email’);
// Prefix help markup to Title field
$form[’title’][’#prefix’] = ‘<h5>’ .

389

Chapter 14: Deploying your Application as a Drupal Installation Profile

theme(’advanced_help_topic’, ‘litworkshop’, ‘about-litworkshop’) .
‘ Find out more about the On-line literary workshop</h5>’;
break;

default:
break;

}
}

The #prefix Form API property is used to simply . . . prefix the markup output by the advanced help
topic theming function for the litworkshop module, invoking the about-litworkshop topic.

Figure 14-2 shows how, as a result, the embedded Help icon appears in the Application Form when you
click on the Join! menu item.

Figure 14-2

Figure 14-3 shows the result of clicking on the embedded Help icon.

Figure 14-4 shows the results of clicking on the On-Line Literary Workshop breadcrumb element.

Your on-line context-sensitive Help system is ready for deployment! Just edit the separate HTML help
files, and you are all set to go!

390

Chapter 14: Deploying your Application as a Drupal Installation Profile

Figure 14-3

Figure 14-4

391

Chapter 14: Deploying your Application as a Drupal Installation Profile

Installing Profiles! Kill the Webmaster!
There’s that violent phrase again. Once touted as the ultimate webmaster-slayer in Drupal land, instal-
lation profiles would enable a user to download a tarball, install it as she would a fresh Drupal release,
but be provided instead with a series of built-in configurations and third-party modules all set up to
provide a specific kind of feature set (an on-line newspaper, a pastebin-like application for sharing code
snippets, an on-line community, a blog, etc.). This would be huge: A user with no knowledge whatsoever
of Drupal could be provided with an off-the-shelf solution for her needs.

However, for some reason, the offerings have been sparse, indeed. Very few installation profiles have
been published. Just the plain difficulty level, along with certain gotchas and caveats may go toward
explaining why folks are just finding it simpler to do a MySQL dump and simply tarball the Drupal
installation and make that available instead. But an installation profile allows you to use the latest, and
hence most secure, version of Drupal instead of the one that happened to be used in development, and
it is still something that you can definitely leverage to your advantage. Calls are constantly being made
for developers to make use of this mode of website application distribution, which would do much to
broaden the Drupal user base.

What Are Installation Profiles?
Installation profiles are simply scripts located in the aptly named profiles directory, with the suffix .profile,
which are designed to programmatically configure Drupal, install and enable modules, and so on, as if
someone were following these steps interactively in a browser window.

When you install Drupal (that is, point your browser at the root directory of a freshly unpacked Drupal
tarball), you are given a choice of all the installation profiles found in the profile directory. If translation
subdirectories are found (e.g., a Spanish translation: .translations/es.po), they are installed also.

The best way to understand what they are is to analyze an existing one. The next section analyzes dru-
palbin, an installation profile that can be downloaded from drupal.org.

Analyzing Drupalbin: An Example Installation Profile
The drupalbin installation profile is found at http://drupal.org/project/drupalbin. It consists of the
following:

‘-- drupalbin
|-- LICENSE.txt
|-- README.txt
‘-- drupalbin.profile

The profile is simply a PHP file with a series of functions that Drupal executes as it goes through the steps
of the installation process. Like most installation profiles, it is patterned on the default Drupal installation
profile file. Here is the drupalbin.profile file:

<?php
// $Id: drupalbin.profile,v 1.1.4.2 2008/04/02 17:35:36 robloach Exp $

/**
* @file

392

Chapter 14: Deploying your Application as a Drupal Installation Profile

* Install Profile for DrupalBin - http://drupalbin.com
*/

/**
* Return an array of the modules to be enabled when this profile is installed.
*
* @return
* An array of modules to be enabled.
*/

function drupalbin_profile_modules() {
return array(
// Core - required
‘block’, ‘filter’, ‘node’, ‘system’, ‘user’,

// Core - optional
‘color’, ‘help’, ‘menu’, ‘path’, ‘search’, ‘taxonomy’,

// GeSHi Filter
‘geshifilter’, ‘geshinode’,

// Other
‘token’, ‘pathauto’, ‘auto_nodetitle’, ‘clone’, ‘print’

);
}

/**
* Return a description of the profile for the initial installation screen.
*
* @return
* An array with keys ‘name’ and ‘description’ describing this profile.
*/

function drupalbin_profile_details() {
return array(
‘name’ => ‘DrupalBin’,
‘description’ => ‘Tool to collaborate and debug code snippets.’

);
}

/**
* Return a list of tasks that this profile supports.
*
* @return
* A keyed array of tasks the profile will perform during
* the final stage. The keys of the array will be used internally,
* while the values will be displayed to the user in the installer
* task list.
*/

function drupalbin_profile_task_list() {
}

/**
* Perform any final installation tasks for this profile.
*
* @param $task
* The current $task of the install system. When hook_profile_tasks()

393

Chapter 14: Deploying your Application as a Drupal Installation Profile

* is first called, this is ‘profile’.
* @param $url
* Complete URL to be used for a link or form action on a custom page,
* if providing any, to allow the user to proceed with the installation.
*
* @return
* An optional HTML string to display to the user. Only used if you
* modify the $task, otherwise discarded.
*/

function drupalbin_profile_tasks(&$task, $url) {
// Site information
variable_set(’site_mission’, ‘Post a code snippet.’);
variable_set(’site_frontpage’, ‘node/add/geshinode’);

// Permissions
db_query("UPDATE {permission} SET perm = ‘%s’ WHERE rid = %d",
‘create source code node, access content, clone node, search content’, 1);

db_query("UPDATE {permission} SET perm = ‘%s’ WHERE rid = %d",
‘create source code node, edit own source code node, access \

content, clone node, search content’, 2);

// Taxonomy
$tags = array(
‘name’ => ‘Tags’,
‘help’ => ‘Any tags you would like to associate with your code, \

delimitered by commas (example: Views, CCK, Module, etc).’,
‘relations’ => ‘0’,
‘hierarchy’ => ‘1’,
‘multiple’ => ‘0’,
‘required’ => ‘0’,
‘tags’ => ‘1’,
‘module’ => ‘taxonomy’,
‘weight’ => ‘0’,
‘nodes’ => array(’geshinode’ => ‘geshinode’)

);
taxonomy_save_vocabulary($tags);

// PathAuto
variable_set(’pathauto_node_geshinode_pattern’, ‘[nid]’);

// Automatic Node Titles
variable_set(’ant_geshinode’, ‘2’);
variable_set(’ant_pattern_geshinode’, ‘Code’);

// String Overrides
variable_set(’locale_custom_strings_en’,
array(

‘Printer-friendly version’ => ‘Download’,
)

);
}

394

Chapter 14: Deploying your Application as a Drupal Installation Profile

All the functions are prefixed with the installation profile name (the same as the subdirectory under
./profiles):

drupalbin_profile_modules() — The first function, drupalbin_profile_modules(), returns
an array of modules, present in the ./sites/all/modules directory of the installation tarball,
which should be enabled automatically.

drupalbin_profile_details() — The second function, drupalbin_profile_details(),
returns, as the comment says, the name and description of the installation profile so that it can
appear in the list of available profiles, if Drupal finds more than one.

drupalbin_profile_task_list() — The third function, drupalbin_profile_task_list(),
returns a list of tasks to appear on the left-hand side of the screen, and marked as done by Dru-
pal as the installation process advances. While this is not used here, you will be using it in your
own Literary Workshop installation profile.

drupalbin_profile_tasks() — The last function, drupalbin_profile_tasks(), first sets some
variables, such as the Site mission, then sets up some permissions by inserting them directly into
the permission database table. Next, a taxonomy vocabulary called Tags is created, a pathauto
pattern is set, and the automatic nodetitle module is configured. Finally, the default English
locale string Printer-friendly version is customized to read as ‘‘Download’’ (this is logical for a
code paste bin–type of application).

Writing the On-Line Literary Workshop
Installation Profile

It’s time to write your own installation profile for the On-Line Literary Workshop, which will aid not only
in deployment, but also in sharing this development with others who can download it from drupal.org.
The benefits, apart from scoring karma points, are that the more people who use this website application,
the more suggestions and bug fixes will come flowing in, improving its quality continually.

To accomplish this, follow the steps outlined in the following subsections, which deal with a clean Drupal
installation as the starting point, how to add in the modules and themes that form part of the installation
profile, how to include your views as versionable text files easily installed when the user follows the
installation procedure, how to prepare the various directories and the scripts that belong there, and
finally, how to create the Drupal installation tarball itself.

Starting with a Clean Drupal Installation Tarball
The first thing to do is to unpack a Drupal 6.x release installation tarball into a working directory. When
you have finished your installation profile, it can be tarred up again for easy download. If you want to
publish the installation profile on http://drupal.org itself, you only need publish the contents to be
placed under the ./profile directory. But the goal here is to create a convenient tarball that may be down-
loaded, with modules and everything. (As always, you may download this as the code corresponding to
this chapter, even though the profile is published on http://drupal.org.)

395

Chapter 14: Deploying your Application as a Drupal Installation Profile

Following the Drupal naming convention, the parent of the document root, that is, the root node of the
installation profile tarball, is named in the following manner:

.
‘-- drupal-litworkshop-6.4-1.0

|-- CHANGELOG.txt
|-- COPYRIGHT.txt
|-- INSTALL.mysql.txt
|-- INSTALL.pgsql.txt
|-- INSTALL.txt
|-- LICENSE.txt
|-- MAINTAINERS.txt
|-- UPGRADE.txt
|-- cron.php
|-- includes
|-- index.php
|-- install.php
|-- misc
|-- modules
|-- profiles
|-- robots.txt
|-- scripts
|-- sites
|-- themes
|-- update.php
‘-- xmlrpc.php

Copying in the Modules and the Theme
Copy into drupal-litworkshop-6.4-1.0/sites/all/modules all the modules, including the custom
litworkshop module. Copy into drupal-litworkshop-6.4-1.0/sites/all/themes the Zen theme and
zenlitworkshop subtheme.

What about the .svn Subdir cruft?
Since ./sites/modules and ./sites/themes constitute a working copy of the SVN repos-
itory, you need a simple way to copy them to the distribution profile without all the
.svn subdirs (where subversion stores all its metadata). svn export command to the
rescue! For this purpose, the following form is best:

$ svn export WORKING-COPY-PATH DESTINATION-PATH

This will export the working copy path at revision WORKING to DESTINATION-PATH,
a directory that should not exist. For example:

$ cd sites
$ svn export modules /tmp/modules
$ svn export themes /tmp/themes

Then the directories may be simply copied into the installation profile filesystem under
sites.

396

Chapter 14: Deploying your Application as a Drupal Installation Profile

Abstracting out the Views into the litworkshop Module
Real women and men don’t leave their views in the database.

It’s going to be a lot simpler for our installation profile, and for views reuse in general, to abstract out the
views we have developed for the On-Line Literary Workshop website application into text files associated
with the litworkshop module, via an implementation of hook_views_default_views().

By implementing this hook in a file named according to the file-naming convention found in the Views
API and returning an array of views expressed as code, views can be stored in text files rather than
configuration settings stored in the database.

To carry this out in the On-Line Literary Workshop, you need to carry out the following steps:

1. Export all the views germane to our application, and transform the output from the export
process into code stored in a text file. (In Administer � Site building � Views, each enabled
view listed has an Export link.)

2. Write a function implementing hook_views_default_views() so that the views cache mech-
anism will pick up the views, in the same way as those specified by Organic Groups, for
example.

The standard way to do this is documented in the file docs.php found in the Views module docs subdi-
rectory. The following function needs to be placed in a file named MODULENAME.views_default.inc and
will auto-load provided it is found in the module directory or in a subdirectory called includes:

function hook_views_default_views() {
// Begin copy and paste of output from the Export tab of a view.
$view = new view;
$view->name = ‘frontpage’;

...
// End copy and paste of Export tab output.

// Add view to list of views to provide.
$views[$view->name] = $view;

// ...Repeat all of the above for each view the module should provide.

// At the end, return array of default views.
return $views;

}

However,

<?php
// Id

// "Borrowed" from og_views module by Moshe Weitzman
// Declare all the .view files in the views subdir that end in .view
function litworkshop_views_default_views() {

$files = file_scan_directory(drupal_get_path(’module’,
‘litworkshop’). ‘/views’, ‘.view’);
foreach ($files as $absolute => $file) {

397

Chapter 14: Deploying your Application as a Drupal Installation Profile

require $absolute;
$views[$view->name] = $view;

}
return $views;

}

This will be run once by the views cache mechanism and will automatically include and enable all
the views present as text files with extension .view in the ./sites/all/modules/litworkshop/views
subdirectory.

All that is left to do is to place the views include file in the module directory structure, as shown below.

Exporting the Website Application Views
The views developed thus far are the following:

genre_browser

love_letter_detector

og_ghp_table

user_stories

Export and place the resulting code of each view into a separate .view text file in the views subdirectory
as shown above. Then, delete each view. (Don’t worry if you are trying this out on the test site — that’s
why you use Subversion for version control.) Don’t forget, these are php files and require the appropriate
prefixed heading, as usual:

<?php
// Id
$view = new view;
...

The Views Include File
Add the file litworkshop.views_default.inc as shown above.

The litworkshop module now comprises the following files:

litworkshop/
|-- help
| |-- about-litworkshop.html
| |-- application-form.html
| |-- applying.html
| |-- getting-started.html
| |-- joining-group.html
| |-- litworkshop.help.ini
| ‘-- starting-group.html
|-- litworkshop.info
|-- litworkshop.module
|-- litworkshop.views_default.inc
‘-- views

|-- genre_browser.view

398

Chapter 14: Deploying your Application as a Drupal Installation Profile

|-- love_letter_detector.view
|-- og_ghp_table.view
‘-- user_stories.view

2 directories, 14 files

You may need to go to Administer � Site building � Views � Tools and hit the ‘‘Clear views cache’’
button in order for these views to reappear in the Administer � Site building � Views list.

Preparing the ./profile Directory
Regarding the ./profile directory itself, since you do not want people having to choose which profile
to install, but rather wish to automate the whole installation, the first thing to do might be to delete
the contents of the ./profiles/default directory so that the only installation profile Drupal will find is
your own.

More practically, rename the default subdirectory to literaryworkshop, and the name of the .profile file to
literaryworkshop.profile. Do likewise with the prefix of each function. Your profile directory should look
like this:

profiles
‘-- literaryworkshop

‘-- literaryworkshop.profile

Your starting literaryworkshop.profile should look like this:

<?php
// Id

/**
* Return an array of the modules to be enabled when this profile is installed.
*
* @return
* An array of modules to enable.
*/

function literaryworkshop_profile_modules() {
return array(’color’, ‘comment’, ‘help’, ‘menu’, ‘taxonomy’, ‘dblog’);

}

/**
* Return a description of the profile for the initial installation screen.
*
* @return
* An array with keys ‘name’ and ‘description’ describing this profile,
* and optional ‘language’ to override the language selection for
* language-specific profiles.
*/

function literaryworkshop_profile_details() {
return array(
‘name’ => ‘Drupal’,
‘description’ => ‘Select this profile to enable some basic \

Drupal functionality and the default theme.’
);

}

399

Chapter 14: Deploying your Application as a Drupal Installation Profile

/**
* Return a list of tasks that this profile supports.
*
* @return
* A keyed array of tasks the profile will perform during
* the final stage. The keys of the array will be used internally,
* while the values will be displayed to the user in the installer
* task list.
*/

function literaryworkshop_profile_task_list() {
}

/**
* Perform any final installation tasks for this profile.
*
* The installer goes through the profile-select -> locale-select
* -> requirements -> database -> profile-install-batch
* -> locale-initial-batch -> configure -> locale-remaining-batch
* -> finished -> done tasks, in this order, if you don’t implement
* this function in your profile.
*
* If this function is implemented, you can have any number of
* custom tasks to perform after ‘configure’, implementing a state
* machine here to walk the user through those tasks. First time,
* this function gets called with $task set to ‘profile’, and you
* can advance to further tasks by setting $task to your tasks’
* identifiers, used as array keys in the hook_profile_task_list()
* above. You must avoid the reserved tasks listed in
* install_reserved_tasks(). If you implement your custom tasks,
* this function will get called in every HTTP request (for form
* processing, printing your information screens and so on) until
* you advance to the ‘profile-finished’ task, with which you
* hand control back to the installer. Each custom page you
* return needs to provide a way to continue, such as a form
* submission or a link. You should also set custom page titles.
*
* You should define the list of custom tasks you implement by
* returning an array of them in hook_profile_task_list(), as these
* show up in the list of tasks on the installer user interface.
*
* Remember that the user will be able to reload the pages multiple
* times, so you might want to use variable_set() and variable_get()
* to remember your data and control further processing, if $task
* is insufficient. Should a profile want to display a form here,
* it can; the form should set ‘#redirect’ to FALSE, and rely on
* an action in the submit handler, such as variable_set(), to
* detect submission and proceed to further tasks. See the configuration
* form handling code in install_tasks() for an example.
*
* Important: Any temporary variables should be removed using
* variable_del() before advancing to the ‘profile-finished’ phase.
*
* @param $task
* The current $task of the install system. When hook_profile_tasks()
* is first called, this is ‘profile’.

400

Chapter 14: Deploying your Application as a Drupal Installation Profile

* @param $url
* Complete URL to be used for a link or form action on a custom page,
* if providing any, to allow the user to proceed with the installation.
*
* @return
* An optional HTML string to display to the user. Only used if you
* modify the $task, otherwise discarded.
*/

function literaryworkshop_profile_tasks(&$task, $url) {

// Insert default user-defined node types into the database. For a complete
// list of available node type attributes, refer to the node type API
// documentation at: http://api.drupal.org/api/HEAD/function/hook_node_info.
$types = array(
array(

‘type’ => ‘page’,
‘name’ => st(’Page’),
‘module’ => ‘node’,
‘description’ => st("A page, similar in form to a

story, is a simple method for creating and displaying
information that rarely changes, such as an \"About us\" section
of a website. By default, a page entry does not allow

visitor comments and is not featured on the site’s initial home
page."),

‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,

),
array(

‘type’ => ‘story’,
‘name’ => st(’Story’),
‘module’ => ‘node’,
‘description’ => st("A story, similar in form to a \

page, is ideal for creating and displaying content that
informs or engages website visitors. Press releases, site
announcements, and informal blog-like entries may all be
created with a story entry. By default, a story
entry is automatically featured on the site’s initial home

page, and provides the ability to post comments."),

‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,

),
);

foreach ($types as $type) {
$type = (object) _node_type_set_defaults($type);
node_type_save($type);

}

401

Chapter 14: Deploying your Application as a Drupal Installation Profile

// Default page to not be promoted and have comments disabled.
variable_set(’node_options_page’, array(’status’));
variable_set(’comment_page’, COMMENT_NODE_DISABLED);

// Don’t display date and author information for page nodes by default.
$theme_settings = variable_get(’theme_settings’, array());
$theme_settings[’toggle_node_info_page’] = FALSE;
variable_set(’theme_settings’, $theme_settings);

// Update the menu router information.
menu_rebuild();

}

/**
* Implementation of hook_form_alter().
*
* Allows the profile to alter the site-configuration form. This is
* called through custom invocation, so $form_state is not populated.
*/

function literaryworkshop_form_alter(&$form, $form_state, $form_id) {
if ($form_id == ‘install_configure’) {
// Set default for site name field.
$form[’site_information’][’site_name’][’#default_value’] =

$_SERVER[’SERVER_NAME’];
}

}

At this point, you have to ask yourself the question: What constitutes the On-Line Literary Workshop
website application? The following need to be specified:

Modules

Content items

Taxonomy vocabularies and their terms

Nodequeues

Variables

The theme

Views have been abstracted out and dealt with separately, so they do not have to be dealt with by the
profile script.

The details function is as follows:

function literaryworkshop_profile_details() {
return array(
‘name’ => ‘Drupal (On-line Literary Workshop)’,
‘description’ => ‘Select this profile to enable the On-line \

Literary Workshop and the literary workshop theme.’
);

}

402

Chapter 14: Deploying your Application as a Drupal Installation Profile

The modules function is as follows (Drupal searches in all the usual places, plus in a modules directory
under the installation profile directory itself; you are using ./sites/all/modules):

function literaryworkshop_profile_modules() {
// Core - required
‘block’, ‘filter’, ‘node’, ‘system’, ‘user’,

// Core - optional
‘blog’, ‘book’, ‘color’, ‘dblog’, ‘forum’,
‘help’, ‘menu’, ‘path’, ‘php’, ‘profile’,
‘search’, ‘taxonomy’, ‘tracker’,

// Content construction kit
‘content’, ‘content_copy’, ‘content_permissions’, ‘fieldgroup’,
‘nodereference’, ‘number’, ‘optionwidgets’, ‘text’, ‘userreference’,

// Date/Time
‘date’, ‘date_api’, ‘date_copy’, ‘date_timezone’,

// Literary workshop
‘litworkshop’,

// Mail
‘privatemsg’,

// Nodequeue
‘nodequeue’,

// Organic groups
‘og’, ‘og_access’, ‘og_views’,

// Other
‘advanced_help’, ‘global_redirect’, ‘token’, ‘pathauto’,
‘todoalarm’, ‘service_links’,

// Taxonomy
‘tagadelic’,

// User interface
‘jquery_plugin’,

// Views
‘views’, ‘views_ui’,

}

Neither the Devel nor the Drush module will form part of the installation profile.

All that is lacking now is for a series of non-interactive configuration steps to be executed. Since they
are non-interactive, a simple series of tasks can be scripted in the literaryworkshop_profile_tasks()
function, without it being necessary to implement the state machine of separate tasks/URL pairs outlined
in the comment documenting that function.

Rather, a series of statements can be included that create content types, taxonomy vocabularies, and their
terms and set up the value of Drupal variables and the default theme.

403

Chapter 14: Deploying your Application as a Drupal Installation Profile

The complete literaryworkshop.profile is now as follows:

<?php
// Id

/**
* Return an array of the modules to be enabled when this profile is installed.
*
* @return
* An array of modules to enable.
*/

function literaryworkshop_profile_modules() {
// Core - required
‘block’, ‘filter’, ‘node’, ‘system’, ‘user’,

// Core - optional
‘blog’, ‘book’, ‘color’, ‘dblog’, ‘forum’,
‘help’, ‘menu’, ‘path’, ‘php’, ‘profile’,
‘search’, ‘taxonomy’, ‘tracker’,

// Content construction kit
‘content’, ‘content_copy’, ‘content_permissions’, ‘fieldgroup’,
‘nodereference’, ‘number’, ‘optionwidgets’, ‘text’, ‘userreference’,

// Date/Time
‘date’, ‘date_api’, ‘date_copy’, ‘date_timezone’,

// Literary workshop
‘litworkshop’,

// Mail
‘privatemsg’,

// Nodequeue
‘nodequeue’,

// Organic groups
‘og’, ‘og_access’, ‘og_views’,

// Other
‘advanced_help’, ‘global_redirect’, ‘token’, ‘pathauto’,
‘todoalarm’, ‘service_links’,

// Taxonomy
‘tagadelic’,

// User interface
‘jquery_plugin’,

// Views
‘views’, ‘views_ui’,

}

/**

404

Chapter 14: Deploying your Application as a Drupal Installation Profile

* Return a description of the profile for the initial installation screen.
*
* @return
* An array with keys ‘name’ and ‘description’ describing this profile,
* and optional ‘language’ to override the language selection for
* language-specific profiles.
*/

function literaryworkshop_profile_details() {
return array(
‘name’ => ‘Drupal (On-line Literary Workshop)’,
‘description’ => ‘Select this profile to enable the On-line \

Literary Workshop and the literary workshop theme.’
);

}

/**
* Return a list of tasks that this profile supports.
*
* @return
* A keyed array of tasks the profile will perform during
* the final stage. The keys of the array will be used internally,
* while the values will be displayed to the user in the installer
* task list.
*/

function literaryworkshop_profile_task_list() {
}

/**
* Perform any final installation tasks for this profile.
*
* The installer goes through the profile-select -> locale-select
* -> requirements -> database -> profile-install-batch
* -> locale-initial-batch -> configure -> locale-remaining-batch
* -> finished -> done tasks, in this order, if you don’t implement
* this function in your profile.
*
* If this function is implemented, you can have any number of
* custom tasks to perform after ‘configure’, implementing a state
* machine here to walk the user through those tasks. First time,
* this function gets called with $task set to ‘profile’, and you
* can advance to further tasks by setting $task to your tasks’
* identifiers, used as array keys in the hook_profile_task_list()
* above. You must avoid the reserved tasks listed in
* install_reserved_tasks(). If you implement your custom tasks,
* this function will get called in every HTTP request (for form
* processing, printing your information screens and so on) until
* you advance to the ‘profile-finished’ task, with which you
* hand control back to the installer. Each custom page you
* return needs to provide a way to continue, such as a form
* submission or a link. You should also set custom page titles.
*
* You should define the list of custom tasks you implement by
* returning an array of them in hook_profile_task_list(), as these
* show up in the list of tasks on the installer user interface.
*

405

Chapter 14: Deploying your Application as a Drupal Installation Profile

* Remember that the user will be able to reload the pages multiple
* times, so you might want to use variable_set() and variable_get()
* to remember your data and control further processing, if $task
* is insufficient. Should a profile want to display a form here,
* it can; the form should set ‘#redirect’ to FALSE, and rely on
* an action in the submit handler, such as variable_set(), to
* detect submission and proceed to further tasks. See the configuration
* form handling code in install_tasks() for an example.
*
* Important: Any temporary variables should be removed using
* variable_del() before advancing to the ‘profile-finished’ phase.
*
* @param $task
* The current $task of the install system. When hook_profile_tasks()
* is first called, this is ‘profile’.
* @param $url
* Complete URL to be used for a link or form action on a custom page,
* if providing any, to allow the user to proceed with the installation.
*
* @return
* An optional HTML string to display to the user. Only used if you
* modify the $task, otherwise discarded.
*/

function literaryworkshop_profile_tasks(&$task, $url) {

// Insert default user-defined node types into the database. For a complete
// list of available node type attributes, refer to the node type API
// documentation at: http://api.drupal.org/api/HEAD/function/hook_node_info.
$types = array(
array(

‘type’ => ‘page’,
‘name’ => st(’Page’),
‘module’ => ‘node’,
‘description’ => st("A page, similar in form to a \

story, is a simple method for creating and displaying \
information that rarely changes, such as an \"About us\" section \
of a website. By default, a page entry does not allow \
visitor comments and is not featured on the site’s initial home \ page."),

‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,

),
array(

‘type’ => ‘story’,
‘name’ => st(’Story’),
‘module’ => ‘node’,
‘description’ => st("A story, similar in form to a \

page, is ideal for creating and displaying content that \
informs or engages website visitors. Press releases, site \

announcements, and informal blog-like entries may all be created \
with a story entry. By default, a story entry is \
automatically featured on the site’s initial home page, and provides \
the ability to post comments."),

406

Chapter 14: Deploying your Application as a Drupal Installation Profile

‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,

),
array(

‘type’ => ‘application’,
‘name’ => st(’Application’),
‘module’ => ‘node’,
‘description’ => st("The Application is filled out \

by those applying for membership in the Literary Workshop."),
‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,
‘has_title’ => TRUE,
‘title_label’ => ‘E-mail’,
‘has_body’ => FALSE,

),
array(

‘type’ => ‘group’,
‘name’ => st(’Group’),
‘module’ => ‘node’,
‘description’ => st("Create a new affinity Group."),
‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,
‘has_title’ => TRUE,
‘title_label’ => ‘Title’,
‘has_body’ => TRUE,
‘body_label’ => ‘Body’,
/* REQUIRE OG AND PUT IN OG SPECIFIC SETTINGS */

),
array(

‘type’ => ‘literary_piece’,
‘name’ => st(’Literary Piece’),
‘module’ => ‘node’,
‘description’ => st("A Literary Piece a member \

submits for critique or for possible submission to publications."),
‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,
‘has_title’ => TRUE,
‘title_label’ => ‘Title’,
‘has_body’ => FALSE,

),
array(

‘type’ => ‘quote’,
‘name’ => st(’Quote’),

407

Chapter 14: Deploying your Application as a Drupal Installation Profile

‘module’ => ‘node’,
‘description’ => st("Create a Quote for random \

display at the top of each page."),
‘custom’ => TRUE,
‘modified’ => TRUE,
‘locked’ => FALSE,
‘help’ => ‘’,
‘min_word_count’ => ‘’,
‘has_title’ => TRUE,
‘title_label’ => ‘Quote’,
‘has_body’ => TRUE,
‘body_label’ => ‘Background’,

),
);

foreach ($types as $type) {
$type = (object) _node_type_set_defaults($type);
node_type_save($type);

}

// Default page to not be promoted and have comments disabled.
variable_set(’node_options_page’, array(’status’));
variable_set(’comment_page’, COMMENT_NODE_DISABLED);

// Don’t display date and author information for page nodes by default.
$theme_settings = variable_get(’theme_settings’, array());
$theme_settings[’toggle_node_info_page’] = FALSE;
variable_set(’theme_settings’, $theme_settings);

// Create the Author and Tags vocabularies applied to Quote \
and Literary Pieces respectively, and add terms to each.

$vocabulary = array(
‘name’ => st(’Authors’),
‘description’ => st(’Authors of quotes, as used in quote of the day.’),
‘help’ => st(’Multiple authors can be selected.’),
‘nodes’ => array(’news’ => st(’Quote’)),
‘hierarchy’ => 0,
‘relations’ => 0,
‘tags’ => 1,
‘multiple’ => 1,
‘required’ => 1,

);
taxonomy_save_vocabulary($vocabulary);
// Define some terms to categorize news items.
$terms = array(
st(’Brian Aldiss’),
st(’Douglas Adams’),
st(’Matthew Arnold’),
st(’Somerset Maugham’),
);

// The taxonomy_form_term form is not in taxonomy.module needs
// taxonomy.admin.inc to be loaded.
$form_id = ‘taxonomy_form_term’;
require_once ‘modules/taxonomy/taxonomy.admin.inc’;
foreach ($terms as $name) {

408

Chapter 14: Deploying your Application as a Drupal Installation Profile

$form_state[’values’][’name’] = $name;
$form_state[’clicked_button’][’#value’] = st(’Save’);
drupal_execute($form_id, $form_state, (object)$vocabulary);

}
$vocabulary = array(
‘name’ => st(’Tags’),
‘description’ => st(’Categories for liteary pieces.’),
‘nodes’ => array(’news’ => st(’Literary Piece’)),
‘hierarchy’ => 0,
‘relations’ => 0,
‘tags’ => 1,
‘multiple’ => 0,
‘required’ => 0,

);
taxonomy_save_vocabulary($vocabulary);
// Define some terms to categorize news items.
$terms = array(
st(’Elegy’),
st(’Flash fiction’),
st(’Free verse’),
st(’Haibun’),
st(’Haiku’),
st(’Limerick’),
st(’Sonnet’),
);

// The taxonomy_form_term form is not in taxonomy.module needs
// taxonomy.admin.inc to be loaded.
$form_id = ‘taxonomy_form_term’;
require_once ‘modules/taxonomy/taxonomy.admin.inc’;
foreach ($terms as $name) {
$form_state[’values’][’name’] = $name;
$form_state[’clicked_button’][’#value’] = st(’Save’);
drupal_execute($form_id, $form_state, (object)$vocabulary);

}

// Variable settings
variable_set(’admin_theme’, ‘bluemarine’);
variable_set(’theme_default’, ‘zenlitworkshop’);
variable_set(’og_home_page_view’, ‘og_ghp_table’);

$themes = system_theme_data();
if (isset($themes[’zenlitworkshop’])) {

system_initialize_theme_blocks($theme);
db_query("UPDATE {system} SET status = 1 WHERE type = ‘theme’

and name = ‘%s’", ‘zenlitworkshop’);
// Update the menu router information.
menu_rebuild();
drupal_rebuild_theme_registry();

}
}

/**
* Implementation of hook_form_alter().
*
* Allows the profile to alter the site-configuration form. This is

409

Chapter 14: Deploying your Application as a Drupal Installation Profile

* called through custom invocation, so $form_state is not populated.
*/

function literaryworkshop_form_alter(&$form, $form_state, $form_id) {
if ($form_id == ‘install_configure’) {
// Set default for site name field.
$form[’site_information’][’site_name’][’#default_value’] =

$_SERVER[’SERVER_NAME’];
}

}

Caveats
As of this writing, no one has ever shown how to create content types implemented on the basis of the
Content Construction Kit during the install process. Nor are nodequeues dealt with. In any case, it is a
simple matter to import these cleanly after the fact, and this can be dealt with in the On-Line Help under
a topic such as ‘‘Interactive tasks required to complement the install process.’’

Creating the Drupal Installation Tarball Itself
Change to the parent directory of drupal-litworkshop-6.4-1.0, and execute the following command to
create the tarball:

$ tar cvzf drupal-litworkshop-6.4-1.0.tgz drupal-litworkshop-6.4-1.0/

Summary
The emphasis in this chapter has been on deployment and the deployment phase of the On-Line Literary
Workshop. For this purpose, you have seen how to implement a complete on-line Help system based
on Earl Miles’s Advanced Help module (first seen with the birth of the Views 2 module). And you have
learned what installation profiles are and how the complete website application can be prepared and
packaged in this way, once the design and implementation work has been tested and finalized.

410

Acquia Drupal as an
Enterprise-Ready

Alternative

The Acquia company exists in the best for-profit tradition of the Open Source business model, which
is that of providing services paid for by clients built on an Open Source software system — one, that
is, published under an Open Source license and available free of charge.

Dries Buytaert, the creator and founder of the Open Source Drupal Community and the founder of
the Acquia company, often compares Acquia to Red Hat, as Drupal is to Linux. The rationale here
is that Red Hat is a distribution of the freely available Linux operating system, but is not itself freely
available since its distribution adds a commercial service in and of itself. And clients have shown
that they are willing to pay for that service.

However, I would suggest that the metaphor model might be closer to the following: Acquia is to
Drupal as Canonical (the commercial sponsor of Ubuntu) is to Debian, because Acquia Drupal is still
provided free of charge under the GPL license, as is the regular vanilla Drupal tarball distribution
you can download from the Drupal site itself, which you have been working with in this book.
What Acquia provides are the following services:

Packaging via software integration for the Drupal core and third-party modules

Integration of the Drupal core with selected third-party modules, based on best practices
and tested procedures

Integration with Mollom, an anti-spam service

Monitoring via the Acquia Network

Support

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

First, Drupal is methodically integrated with a hand-picked collection of powerful modules that
can be trusted as the bedrock for Enterprise-ready website applications. One of these modules
connects your installed Acquia Drupal website to Mollom, an anti-spam service akin to Akismet.
Your website is also monitored on the Acquia Network to check that your website is up and running
(Heartbeat service) and to see if any files have been changed (i.e., by an intruder). And finally, you have
access to first-class support, something that can let you rest easy as problems arise in the course of the
website application life cycle.

As a software engineer, this means having that feeling of safe component reuse from the very start.

Trying out Acquia Drupal
You should definitely try out Acquia and prove for yourself how the fact that it already comes with
many pre-selected modules, an excellent theme, and additional functionality can save you a lot of time
and give you a firm base upon which to start your development. This is not to mention the fact that your
site will be constantly monitored to see whether it is up and running, and to report on any filesystem
changes.

From the Acquia home page (http://acquia.com/), when you click on the ‘‘Subscribe to Acquia Net-
work’’ link, you are taken to a product matrix that compares the various Acquia Network Subscriptions
(https://acquia.com/product-matrix). Single server, 2-3 server cluster, and 4+ server bundles are
available for the Community (Free), Standard, Professional, Enterprise, and Elite Product Subscriptions.

There are four main tasks required for generating your Drupal Acquia website application, as follows:

1. Create a subscription.

2. Set up Acquia Drupal.

3. Register with the Acquia Network.

4. Get support.

Step 1: Creating a Subscription
To try out the Single Server site Community Product Subscription (list $200, currently Free), do the
following:

1. Click on the Free button. Figures 15-1 and 15-2 show the Acquia Drupal Subscription Form
and Checkout screen, respectively.

2. After clicking ‘‘Submit Order,’’ you are taken to your ‘‘User account’’ screen (see
Figure 15-3), where you can log into your account with your username and password, as
per the details sent to your registered e-mail address in the mail entitled, ‘‘Acquia account
details for username.’’

412

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-1

3. Click on the Messages tab (Figure 15-4), and access the ‘‘Getting started with your new sub-
scription’’ message, which can be seen in Figure 15-5.

Step 2: Setting up Acquia Drupal
Click on the Download link (see Figure 15-5) to get to the Download page (see Figure 15-6) and download
the full version. Whereas there were update versions and even a way to connect an existing Drupal 6 site
to the Acquia Network, I downloaded the full version to set up.

The ‘‘Getting started. . .’’ message had a handy link to the documentation ‘‘on how to install Acquia
Drupal and use it with the Acquia Network.’’ I suggest that you go there and download the PDF doc
provided because it’s chock-full of cool information and it directs you to good old INSTALL.txt. You also
should do the following:

1. Unpack the file, and rename the Drupal document root appropriately.

413

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-2

2. Copy sites/default/default.settings.php to sites/default/settings.php, and make sure that
the Apache server had Write privileges on the latter.

3. Create a MySQL database and user (with full privileges over that database and only that
database) for the Acquia Drupal installation.

4. Point your browser at the pre-configured site URL, and supply the database name, user-
name, and password (see Figure 15-7).

The configure site screen is almost exactly the same as the Drupal 6 equivalent, that is, a form to set up
the basic site info, administration account, server settings (such as default time zone, and clean URLs
information), and check for updates automatically selected. The only difference is that it asks for your
‘‘Acquia subscription identifier’’ and ‘‘Acquia subscription key,’’ which can easily be visualized at any
time from your Acquia.com Network site, when you hit the Subscription tab. See Figure 15-8.

You fill in the necessary info to create the Admin user and click on the ‘‘Save and continue’’ button.
Gratifyingly, the process is over and the installation is complete, as seen in Figure 15-9.

414

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-3

Figure 15-4

415

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-5

Figure 15-6

416

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-7

Step 3: Registering Your Website with the Acquia Network
Now, go back to the Acquia account dashboard to guide you through registration. Follow these steps:

1. Click on the Task tab, where you will see a link that says ‘‘Task: Connect your Acquia
Drupal site to the Network.’’ Click on this link. Basically, as seen in Figure 15-10, you are
invited to mark this task as done, because the actual task itself was done when you supplied
your Acquia subscription identifier and Acquia subscription key to complete the installation
process.

2. Check this task as done, and click on the ‘‘Update task’’ button.

Now, this is one of the first concrete benefits of being part of the Acquia system. Your site is monitored by
Acquia 24/7, and you are notified by e-mail should your site go down, and notified again when it goes
back up again. This is the Heartbeat service. But, how do you know if your site is properly connected to
the monitoring system?

What about my site? Well, it turns out that because litworkshop was a running Drupal site, just by sub-
scribing, its cron (operating system scheduler service) is run every 5 minutes by the Acquia Network and
you receive an e-mail giving you a cron summary of successful cron invocations on your site! Click on
the Health tab to see a nice Heartbeat uptime report, as in Figure 15-11.

417

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-8

Figure 15-9

418

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-10

Figure 15-11

419

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

To set up cron permanently on your site, the steps that follow show what I did as way of example. But,
you will want to have cron running on your site for the monitoring system to be tailored to your needs.

1. Logging in via ssh (secure shell command line) and as root, I typed the following:

$ crontab -e

2. In the editor that pops up, I added the following, replacing example.com with my own URL:

02,32 * * * * /usr/bin/wget -O - -q http://example.com/cron.php

This effectively instructs cron to be run every 30 minutes.

3. Back at my Acquia Network site login, I clicked on the Settings tab. Under my site name, I
clicked on the Cron tab and instructed Acquia to let me run cron, and that I would be run-
ning it every 30 minutes, as per Figure 15-12. As the Help text states: ‘‘This setting deter-
mines how long the Acquia Network should wait without receiving a heartbeat before it
alerts you that your site may be down.’’

Figure 15-12

After the next period has passed, you should see the heartbeats reflected in the Health tab section (see
Figure 15-11).

420

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

If, however, your cron job doesn’t send in a heartbeat in time, your site will be marked as down, and you
will also receive an e-mail to that effect.

Step 4: Getting Support
Support is one of the things that really distinguishes Acquia Drupal. Use it or lose it! If you get that
‘‘What do I do next?’’ or ‘‘How do I do that?’’ feeling, go right ahead and click on the Tickets tab and
click on the ‘‘Create a new ticket’’ button. State the urgency, specify the related subscription and the type
of support you require (technical, sales, other), fill in a suitable title and description (as per Figure 15-13),
and click Submit.

Figure 15-13

Exploring the New Acquia Drupal Website
Installation

Assuming that you were following along and that you have your Acquia Drupal website up and running,
take a look around.

The most noticeable thing is that the administration menu module (http://drupal.org/project/admin_
menu) is included and enabled by default, providing an extremely convenient dark-colored, thin

421

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

dropdown Admin menu, with quick access to the most common tasks. This saves a great deal of time
and effort. Figure 15-14 shows the easy invocation of Administer � Site building � Modules. The
menu also includes Acquia subscription information and informs you how many anonymous and
authenticated users are currently visiting the site. The menu is pure CSS-based, with just a few jQuery
JavaScript functions for additional tweaking and IE6 support.

Figure 15-14

At Administer � Site building �Modules, the following modules goodies have been specially integrated
into Drupal Acquia:

Acquia agent and Acquia site information (in the Acquia Network section)

Administration menu, as mentioned earlier

Content Construction Kit

Image module

The Markdown input filter (for blogging, easy non-HTML styled input)

Tagadelic (tag cloud)

Fivestar voting and Voting API

422

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Google Analytics

Mollom (Akismet-like spam protection included as part of the Acquia subscription)

Pathauto

Token and Token actions

Views

Print, including support for e-mailing and PDF export of web pages

The last item, the Print module, does not come with any of the two third-party PDF libraries required for
PDF export (dompdf and TCPDF), which one would expect to see here; the reason is that Acquia Drupal
is still distributed under the GPL license, just as Drupal itself is.

The Global Redirect module (http://drupal.org/project/globalredirect) is recognized for its use-
fulness. Even though it didn’t make the first cut of modules initially included in Drupal Acquia, it will
most probably be included in an upcoming version along with Pathauto (which did make the first cut).
This is because it, or something similar, is required to avoid duplicate URLs pointing to the same web
page.

Installing Updates
On September 30, 2008, Dries announced on the Drupal site that Acquia Drupal was out of
beta (http://drupal.org/node/315151). This article explains how the Acquia Network
(http://acquia.com/products-services/acquia-network), ‘‘is a hosted service that helps you
with site management (update notifications, spam blocking, cron service, modification detection, etc.)
and provides real-time visibility into the health and usage of all your Drupal sites that are connected’’
to it. In addition, the Acquia Network gives you access to the Acquia Technical Support Team
(http://acquia.com/products-services/drupal-technical-support). Last but not least, ‘‘we are also
releasing Acquia Drupal (http://acquia.com/products-services/acquia-drupal) today.’’

Because I was already subscribed, I received a notification e-mail concerning the Drupal release and latest
version update, together with instructions. To provide a clear feeling for the quality of Acquia support, I
am including the e-mail text in full:

A new version of Acquia Drupal has just been released that contains important security and bug fixes for
your installation of Acquia Drupal. We recommend that you upgrade to the new version as soon as possible.

Get instructions for upgrading your site. (http://acquia.com/network/manuals)

Download the new version. (http://acquia.com/downloads)

The release notes for Acquia Drupal 1.0.1-ISR:

The Acquia Drupal interim release consists of Acquia’s package of Drupal core with a curated set of con-
tributed modules, plus the ability to connect to the Acquia Network. This version includes the following
updates:

Change Log

US816: Modified — Updated Drupal core to 6.5. See the full release notes (http://drupal.org/
node/318701) for Drupal 6.5 on Drupal.org.

423

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

US816: Modified — Updated imagecache to 6.x-2.0-beta1

US816: Modified — Updated filefield to 6.x-3.x-dev (as of October 8, 2008) since 6.x-3.0-alpha5 is
missing a fix in the install code

US816: Modified — Updated CCK to 6.x-2.0-RC10 including missing files for advanced help

US816: Modified — Updated Views to 6.x-2.0-RC5

DS2: Fixed — Updated the Acquia Marina theme to version 6.x-1.1 from (multiple bug fixes)

The first step was to get the update instructions at https://acquia.com/network/manuals, the first
step of which was to download the PDF manual at https://acquia.com/files/downloads/acquia_
getting_started_1-0_ISR_01.pdf. The Migrating and Upgrading section provided a comprehensive
and detailed list of instructions.

Following the instructions are best practices for upgrading, based on the ‘‘Advanced Migration with the
Command Line’’ section:

1. Make sure the PHP memory limit is greater than or equal to 32 MB; find the following line in
your website’s php.ini file (in Ubuntu, that is /etc/php5/apache2/php.ini):

memory_limit = 32M ; Maximum amount of memory a script may
consume (16MB)

2. Log in on the command line to your site, and place your site in maintenance mode (Admin-
ister � Site configuration � Site maintenance).

3. Prepare a gzip’d backup of your database contents:

mysqldump -u username -p password databasename | gzip > filename.sql .gz

4. Prepare a tarred backup of your site including the database backup:

cd drupal-document-root
tar cvzf backup-filename.tgz .

5. If this is a production site, test restoring your site using the recently created backup file(s).

6. Check that all non-Acquia integrated contributed modules are not present in
./modules/acquia and are present in ./sites/all/modules.

7. Download the current Acquia Drupal release (choose the Update version, which omits the
sites directory along with the .htaccess and robots.txt files) using wget or curl.

wget http://acquia.com/files/downloads/acquia-drupal-1.0.1-ISR.2844-
update.tar.gz

8. Replace old Acquia Drupal distribution files with new ones. Because the use of an update
via a version control system is not one of the options recommended by Acquia, something
like the following is your best option:

424

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Unpack the new release to a new document root, named after the release. For example,
if your present document root is /var/www, change the directory to /var and do the
following:

mysite:/var$ cp www/.htaccess acquia-drupal-1.0.1-ISR-update/
mysite:/var$ cp www/robots.txt acquia-drupal-1.0.1-ISR-update/
mysite:/var$ cp -R carbon-beta/sites acquia-drupal-1.0.1-ISR-update/
mysite:/var$ mv www www-old
mysite:/var$ mv acquia-drupal-1.0.1-ISR-update/ www

Shouldn’t have even skipped a heartbeat (pardon the pun).

9. Still logged in as Admin (User #1), run update.php, click on the Continue button and then
the Update button. Figure 15-15 shows a typical result of this operation.

Figure 15-15

10. There is no Step 10: You’re done!

425

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Introducing the Acquia Marina Theme
So, any new goodies?

The most obvious is the new theme bundled with Acquia Drupal as of their Release version,
developed in partnership with Top Notch Themes and released under the GPL license (see
http://drupal.org/project/acquia_marina to see the theme and www.topnotchthemes.com/ for the
Top Notch Themes site). By going to Administer � Site building � Themes, you can see the new theme
listed, Acquia Marina.

Enable it and set it as default.

The theme project page (http://drupal.org/project/acquia_marina) specifies an incredible number
of special features, including 15 collapsible block regions, optional dropdown primary menu, a set of
icons for core and Views blocks, and cross-browser compatibility, all of which goes to explain why it has
fast become a favorite on http://drupal.org.

Another feature mentioned is that of ‘‘advanced theme settings,’’ which actually allow you to have
interactive control over the widest number of settings ever before made available via the theme set-
tings facility (part of the core starting with the Drupal 6 release). You can see a partial screenshot at
http://drupal.org/node/315553, but it is well worth listing the complete list:

Usual display toggles for Logo, Site name, Mission Statement, and the like

Usual Logo and Shortcut icon settings

General settings

Fine-tune display of Mission statement

Toggle Breadcrumb display

Special optional handling for unregistered usernames

Incredible fine-tuning over search results display formatting

Node (content item) settings

Toggle author username, post date (including custom handling for each content type!)

Toggle new line for each taxonomy term!

Full customization of ‘‘Read more’’ and ‘‘Add new comment’’ links, including special han-
dling for full content or teaser content item views

SEO Optimization

Page title customization

Meta tags customization

Figure 15-16 shows the theme, with its very attractive color scheme, typography, and an example of its
icon set, displaying a newly created page content item.

426

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-16

Checking out Mollom
One way to stop spam is by prohibiting user contribution to your website altogether. However, given
the character of modern website applications and their dependence on user and crowd sourcing of their
content, this is increasingly ceasing to be an option.

That leaves the option of administering comments and content-form submissions manually, but that can
be a tedious and error-prone process, indeed.

The Mollom service (see http://mollom.com) purports not only to stop spam, or negative content, but
also to spot high-quality content, in a positive sense. Its efficiency is, as of this writing, posted on their
homepage as 99.84 percent.

The Mollom service (which has in common with Drupal and Acquia Drupal that of being founded
also by Dries Buytaert) is integrated into Drupal and Acquia Drupal via the Mollom module
(http://drupal.org/project/mollom). It is a paid service (although there is a limited free version), but
an integral part of and hence bundled with the Acquia Network.

427

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

From the ‘‘Getting Started with Acquia’’ manual:

‘‘Mollom works by analyzing content submitted to your site then automatically classifying
it as ‘spam’ (bad) or ‘ham’ (good). Mollom blocks content that it is certain is spam, and lets
content be published that it is certain is legitimate. The small percentage of content in between
(when Mollom is not certain whether a piece of content is legitimate or not) passes through
an extra layer of protection before being published to your website: The user submitting the
content is presented with a simple visual or audio CAPTCHA challenge — a ‘Completely
Automated Public Turing test to tell Computers and Humans Apart’ — that humans can
easily solve, but generally stops automated ‘spambot’ contributions dead in their tracks.’’

The first step to trying it out is:

1. Enable the Mollom module. Go to Administer � Site building �Modules, and enable the
Mollom module in the Other section.

2. Visit Administer � Site configuration �Mollom to enter your Mollom access keys. These
keys can be found on your Acquia Network dashboard (click on your Subscription link in
the Administration menu) under the Subscription tab, in the ‘‘Mollom Spam protection
keys’’ section. Enter your Public and Private keys, and click on the ‘‘Save configuration’’
button. You should see a message similar to the following:

‘‘We contacted the Mollom servers to verify your keys: the Mollom services are
operating correctly. We are now blocking spam.’’

followed by a Site usage statistics graph, and a series of configuration options.

3. Select the ‘‘Protect comment’’ form and ‘‘Protect story form’’ settings in the ‘‘Spam protec-
tion settings’’ section, and maintain the ‘‘Block all submissions on the protected forms until
the server problems are resolved’’ option choice in the ‘‘Server settings’’ section.

4. Go to Administer � User Management � Permissions, and allow anonymous users to:

Access comments

Post comments

Post comments without approval

Create story content

Edit own story content

5. Now, accessing the site as an unauthenticated user (e.g., using a different browser, like
Opera), the anonymous user finds a Navigation menu offering a ‘‘Create content’’ option.
Clicking there, she is given the option of creating a Story. Click on the Story link, and
attempt to make the most sincere post you are capable of. For example, Title: ‘‘Sincerity is
questioned in a recent poll,’’ with any appropriate text in the Body text area. The result is
shown in Figure 15-17.

6. Continuing in the same unauthenticated session, create a spamish story (e.g., something
copied out of your Gmail Spam directory). The results are shown in Figure 15-18.

428

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

Figure 15-17

7. Fill in the Captcha (play the audio if the image captcha is not clear!) and click Save. If the
captcha is filled in correctly, you see the Edit screen once again with no warning; click on the
Save button again, and the Story is posted.

8. In your Admin session, go back to the Mollom Admin page (Administer� Site configuration
�Mollom).

Using the Acquia Partner Program
Just as the Acquia Network monitors your website, the Acquia Partner program is a natural resource
for those seeking pre-screened service providers from all over the world, whether it be an individual
working as mentor or a large company. For all those businesses excited about the alternatives offered
by Open Source projects in general and the Drupal CMS framework in particular, the Partner Program
could well prove the ‘‘missing link’’ that will enable them to find the service providers they need in the
most efficient manner and to obtain the results they expect.

429

Chapter 15: Acquia Drupal as an Enterprise-Ready Alternative

At the same time, the program seems like a great opportunity for those looking for a solid base
upon which to build a career in providing Drupal services. You can find out more about it at
http://acquia.com/blog/introducing-acquia-partner-program.

Figure 15-18

Summary
In this chapter, you heaved a great sigh of relief, as you shifted part of the responsibility for installing and
configuring your website application, as well as for keeping it up-to-date, onto the shoulders of Acquia,
in the best tradition of software engineering reusability.

You checked out the benefits in terms of maintenance, off-the-shelf productivity, monitoring, and other
services, and were able to gain enough experience to tell you whether this path is your best alternative
for Leveraging Drupal and getting your site done right.

430

In
de

x

Index

A
abstraction, and multi-tier architecture, 157
acceptance tests

adding bugs after failed, 94
adding node to, 280–281
creating dev affinity group, 133–134
demystifying, 117–118
development process driven by, 14
linking from user story to, 280
overview of, 6–7
for Prototype milestone, 117–126
upgrading from 5.x to 6.x, 211

access rules
converting 5.x themes to 6.x, 210
updating Drupal core/running update

script, 218
and usability, 374

access rules, usability, 375
Acquia Drupal, 411–430

Acquia Marina theme, 426–427
creating subscription, 412–413
getting support, 421
installing updates, 423–425
overview of, 411–412
registering website, 417–421
setting up, 413–417
trying out, 412
using Acquia Partner program,

429–430
using Mollom service, 427–429
website installation, 421–423

Acquia Marina theme, 426–427
Acquia Network

installing updates, 423–425
monitoring website via, 411–412
registering website with, 417–421
setting up Acquia Drupal, 413
subscribing to, 412

Acquia Partner program, 429–430
Activemenu module, jstools, 337
admin directory, 56
admin role

creating, 31
implementing registration workflow, 208
populating quote region with custom block,

171
using Admin Role module, 257–261

admin user
Acquia Drupal setup using, 414
creating initial prototype, 46–47
Drupal 7 d velopment using, 381
importing and exporting content types, 71
installing Acquia Drupal updates, 425

administration
Drupal 6.x widgets for, 354–361
Drupal 7 enhancements, 367
menu, Acquia Drupal website, 421–422
usability issues, 373–375
warning messages, 96–97

Advanced Help module, Views 2, 385–391
analyzing components, 386–387
defining, 131
implementing help system, 388–391
installing, 227–228
overview of, 385–386
planning help system, 387

affinity groups
acceptance testing, 118–125
creating dev, 131–136

Agile approach to Drupal development, 279–321
adding Acceptance Test node, 280–281
creating block menu to access new view, 288
making user list available, 283–287
making view to list user stories, 281–283
on-line blog functionality, 316–321
overview of, 279–280

Agile Modeling

Agile Modeling
CMMI compatibility with, 12
finding common language, 70
online reference for, 7

Agile modeling, implementing user stories,
289–316

configure logo, 308
CSS layout/styling changes, 307–308
editing page.tpl.php, 306
initial theming, 303–305
placing header, 305–306
Publisher, broadcast call for pieces to be

submitted, 301–303
Publisher, browsing public content, 292–298
Publisher, managing publication, 298–301
Publisher, selecting content, 298
results so far, 309–310
theming footer, 314–316
theming main content area, 313–314
theming Primary menu, 310–311
theming quotations block and left sidebar

regions, 311–313
Workshop Member, starting affinity group,

289–292
AHAH (Asynchronous HTML and HTTP),

324–325
Ajax, 323–325, 354–361
aliases

bulk generating for nodes not aliased, 99
creating Drush, 114
creating in bash shell, 29
verifying in acceptance test, 118
work-around for jQuery and Prototype, 337

application content type, implementing business
objects, 41, 45–46

Architectural baseline
in Elaboration Phase, 126–127
overview of, 11
setting early in project, 92–93
user story implementation and, 89–90
working on, 101–103

articles, vs. pages, 375
Asynchronous HTML and HTTP (AHAH),

324–325
Author Info block, 319–320
Authors vocabulary, 169

autocomplete fields, jQuery, 342–345
Autocomplete Widget, Drupal UI, 338
#autocomplete_path selector, 342

B
backup, upgrading to Drupal 6, 189
bash shell, creating aliases in, 29, 114
Beta milestone

browsing and filtering views. See views,
browsing and filtering

completion of, 156
creating role-specific Navigation menu blocks,

142–144
implementing user stories, 146–148
project planning using Trac Roadmap, 91–96
user stories assigned to, 142

bilingual sites, creating, 248–252
blocks

creating role-specific Navigation menu, 142–144
creating to access new view, 288
creating View, 151
enabling in new region, 172–173
errors when converting 5.x themes to 6.x,

208–209
populating quote region with custom, 171–172
usability issues, 374

Blogroll, 320–321
blogs

completing Primary menu, 81–82
configuring Pathauto module for, 98–99
implementing Author Info block, 319–320
implementing Blogroll, 320–321
implementing Recent Blog Posts block, 320
implementing service links, 318
overview of, 316–317
setting up, 79–80

books, creating, 73–78
browsers

pointing at Drupal installation, 29–30
pointing to test site, 67, 85

bugs, adding, 93
Bugzilla, 54
Business Models, 7
business objects, 33–48

creating application for membership, 39–47

432

In
de

xConstruction Phase. See also views, browsing and filtering

creating for Drupal 6.x installation, 252–256
enabling CCK module, 37–38
identifying, 38–39
installing CCK, 35–37
overview of, 33–35
separating from application configuration, 178
testing workflow, 47–48
usability of, 374

Buytaert, Dries, 367–369, 411

C
cache

abstracting out views with, 397–398
clearing before dumping database, 82, 125

cache, Clear views, 399
CAPTCHA module, 195, 197
card-conversation-confirmation template

Agile approach to development, 282–283, 289,
292, 297–304, 317

finishing up Elaboration Phase, 120
finishing user stories with client, 88
more information on, 87
with Trac, 91
user story implementation, 119
using own dev affinity group, 133

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

categories, project management, 153–154
CCK (Content Construction Kit)

creating application for membership, 39–47
defined, 34
Drupal 6 enhancements, 377
Drupal 6 installation, 247–248
Drupal 7 enhancements, 367
enabling module, 37–38
installing, 35–37
testing workflow, 47–48

CHANGELOG.txt, 365
changesets, browsing with Trac, 54
Clean URLs

acceptance testing, 281
acceptance testing initial prototype,

117–118
adding to first iteration, 93
configuring Drupal 6.x, 243

implementing, 95–99
running Drupal Install Wizard, 243

Clear views cache button, 399
Client Application content type, 255–256
Client Workstation, creating, 18–19
clients

finishing user stories. See user stories, finishing
with client

getting initial feedback from, 85
responsibilities of, 14
sending private messages to, 129–131
writing acceptance tests, 6

Client’s workflow, Drupal 6 installation,
261–268

clouds.jpg, 305, 308
CMMI Distilled website, 11
CMMI Guidelines for Process Integration and

Product Improvement (Chrissis, Konrad, and
Scrum), 11

CMMI website, 11
code coverage, 117
coding standards, 104
collapsible widget, Drupal UI, 338–342
color scheme

adding to footer, 173–174
setting initial theming, 304–305
specifying for regions, 167–168

command line
downloading/installing Drupal from, 25–27, 28
dumping database from, 81–82
importing codebase into repository via, 63
installing Drupal 7 via, 378
shifting files to test site for Drupal 6 upgrade,

189–191
comments, 72–73, 79–80
common language, need for, 70
Community Product Subscription, 412
Concurrent Versions System. See CVS

(Concurrent Versions System)
configuration files, troubleshooting CCK, 36
connectivity, Drupal 7, 367
Construction Phase. See also views, browsing

and filtering
creating dev affinity group, 131–136
creating Document Case and index, 136–140
defined, 10

433

Construction Phase. See also views (continued)

Construction Phase. See also views (continued)
sending private messages to client, 129–131
sorting and tweaking views, 140–141

content
publisher selecting, 298
separation of presentation from, 157–158
theming main area of, 313–314
usability issues, 374, 375

Content Construction Kit. See CCK (Content
Construction Kit)

content types
as business objects. See business objects
configuring front page promotion, 77–78
creating, 71–72
creating groups, 121
creating in Drupal 7, 381–383
defining, 33–34
enabling comments, 72–73
exporting and importing, 71
getting initial feedback from client, 85
importing after writing installation profiles, 410
usability issues, 375–376

contributed modules
in architectural baseline, 127
CCK as. See CCK (Content Construction Kit)
committing to SVN repository, 99
Date and Date API modules as, 134
in Drupal 5.x, 34
in Drupal 6, adding user reference without, 253
in Drupal 7, 369, 376–377
implementing business objects, 39–40
installing, 34–35
Organic Groups module as, 119
placing in site directory folder, 58
reading accompanying READMe.txt files, 97, 114
as third-party modules, 75
User module as, 371

core modules, 74–75
Core-Optional modules, 75
Core-Required modules, 75
CPanel, 23–24
Create Content option, 33, 76
Creative brief, 104
cron

Drupal 7 security features, 370
maintenance tasks, 37

registering website with Acquia network and,
417

setting up permanently on site, 420
CSS (Cascading Style Sheets)

accessing DOM with, 325–327
jQuery using same principles as, 334
layout and styling changes, 307–308
specifying style, 173–174
Zen Garden example, 157

CVS (Concurrent Versions System)
downloading Drupal using, 28–29
grabbing Drupal files from, 240
installing Drupal 7 via, 377–378
switching to using on existing Drupal installation,

192
updating Drupal release, 110–111
updating to latest Drupal 5.x, 191

D
database

deploying to test site, 84
Drupal 6.x configuration, 243
Drupal 6.x installation, 241
Drupal 7 features, 370
versioning state of, 60

Database API, Drupal 7, 367, 371–372
database dump

clearing cache before, 82
committing to repository, 81, 99
in theming, 180
updating modules easily, 114
upgrading to Drupal 6, 189
using phpMyAdmin, 60–61
versioning, 125
what to do about, 60

Date module, 247–248
dedicated servers, 64–67
deploying applications. See installation profiles
deploying to test site

finishing user stories, 100
upgrading from 5.x to 6.x, 211, 234

dev affinity group, using own, 131–136
dev user. See user dev
Devel module, 109–110, 231–234
Devel Themer, configuring, 232

434

In
de

xDrupal 6, upgrading to

Developer Workstation, 18–19
Development Seed blog, 376
directories

for installed contributed modules, 34
installing Content Construction Kit, 35–38
main structure for Drupal, 57–58
main structure for repository, 61–62
using version control, 59–60

docs.php file, 397
Document Case, 136, 137–140
document root sites, 68
documentation, team, 376
DOM (Document Object Model)

accessing with CSS, 325–327
accessing with JavaScript, 327–328
Rich Internet Applications and, 324

DOM inspector, 326
domain, mapping application, 244–245
domain model, 85
Don’t Make Me Think (Krug), 13
DROP TABLE statements, 60–61
Drupal, overview of, 3–16

example used in this book, 15
getting what you want, 13–14
getting with program, 4–7
identifying users, 8–9
information architecture and, 15
mapping business vision/scope, 7–8
organizing iterations, 10–12
turning over project to client, 14
usability, 13
user stories and roles, 9–10

Drupal 5.x
Devel module in, 109–110
installing contributed modules, 34–36
reusing Zen theme in, 179
themable functions for, 158
updating Drupal release, 110–111
updating to latest version for Drupal 6 upgrade,

191–199, 214–215
upgrading to Drupal 6. See Drupal 6, upgrading

to
Views 1 module in, 137

Drupal 5.x, and jQuery
dependent autocomplete fields, 342–345
reusing collapsible widget, 339–342

uses of, 336–339
using Hierarchical Select module, 345–347
validation, 347–349

Drupal 5.x, installing, 22–31
from command line, 28
creating first users, 31
creating MySQL database, 23–27
downloading using FTP, 27–28
installing into root directory, 28–29
making sure settings file is filesystem-writeable,

29
overview of, 22–23
pointing browser at Drupal installation, 29–31

Drupal 6
Agile approach to. See Agile approach to Drupal

development
jQuery breakthrough in, 354–361
pointing browser at Drupal installation, 30
reusing Zen theme in, 179
validation using jQuery, 349–350
Views 2 module in, 137
what has changed in, 365–367

Drupal 6, upgrading to, 187–238
all-new Devel module, 231–234
contributed modules, disabling all, 202
contributed modules, replacing, 216
creating module inventory, 200–201
deploying to test site, 211, 234
enabling modules, 205–206
getting old views back, 226–227
installing Advanced Help module, 227–228
module inventory, 200–201, 215
overview of, 188, 213
preparatory steps before point of no return, 216
recommended reading, 187
re-running site acceptance tests, 211
running update script, 217–218
shifting everything over to test site, 188–191,

214
solving problems with Organic Groups, 218–226
switching to default theme, 201–202
testing updated 5.x version, 199–200
updating Drupal core, 202–205, 217–218
updating to latest Drupal 5.x version, 191–199,

214–215

435

Drupal 6, upgrading to (continued)

Drupal 6, upgrading to (continued)
updating Zen theme, 229–230
upgrading theme, 206–210

Drupal 6.x, installing, 239–278
creating business objects, 252–256
creating Client’s workflow, 261–268
creating database and user, 241
creating Registration workflow, 256–261
creating roles and users, 245–247
creating Translator Team Leader workflow,

268–272
creating Translator’s workflow, 272–278
designing application scope and domain,

244–245
downloading, 240
installing and enabling modules, 247–248
making site bilingual, 248–252
overview of, 239–240
running Drupal Install Wizard, 241–244
unzipping files for upload, 240
uploading files, 240–241

Drupal 7, 368–383
creating literary pieces in, 381–383
database API, 371–372
developing minimalist On-Line Literary Workshop

in, 378–381
development of, 368–369
feature list, 370–371
installing, 377–378
PHP 5, 372
postponement of, 369
projecting contributed module plans, 376–377
usability concerns, usability sprints, 372–376
the Webmaster and, 367–368

Drupal core
preparatory steps before replacing, 216
updating, 202–205, 217–218
updating to latest 5.x version available,

191–193
Drupal Documentation Handbooks

configuring cron jobs, 37
creating first users, 31
installing contributed modules, 34
installing Drupal into root directory, 29
overview of, 19
setting up forums, 78

taxonomy, 147
text filters and input formats, 149
themeable functions, 158–160
Views module, 137

Drupal Dojo Project, 19
Drupal Paid Services forum, 104
Drupal Profile module, 319
Drupal Taxonomy system, 145
drupal_add_js function, 343
drupalbin installation profile, 392–395
drupal.org facelifting, 376
Drush module, 112–117, 120–127
dumping database. See database dump
dynamic content, 160–161

E
editing posts, 374
Effects jTypewriter plug-in, 335
Elaboration Phase, 17–52

cleanup, 104
creating initial environment, 18–19
defined, 10
finishing up, 117–127
getting initial feedback from client, 85
implementing business objects, 33–48
implementing roles, 31–33
initial prototype. See prototypes, building on

initial
installing Drupal as one-click script, 19–22
installing Drupal right, 22–31
overview of, 17–18
putting first role to work, 48–50
reviewing initial environment. See initial

environment, reviewing
updating Drupal release, 109–110
updating modules, 112–117
user stories. See user stories, finishing with

client
e-mail

configuring for site in Drupal 6.x, 243
sending private messages to client, 129–131

enhancements, adding, 93
escaped PHP, 219–222
exporting

content types, 71

436

In
de

xInception Phase

Drupal 7 enhancements for, 367
Website application views, 352

Exposed filters, 152–153
Extreme Programming Explained: Embrace

Change (Beck), 6

F
Fantastico icon, 20–21
feedback, client, 85
files directory, 59
filesystem permissions, for writeable settings

file, 29
FileZilla, 240–241
Filtered HTML, 149
filters. See also views, browsing and filtering

book pages, 78
literary_piece content type, 76
making user list available, 283–287

Final release milestone
creating block menu to access new view, 288
making user list available, 283–287
overview of, 156
project planning using Trac Roadmap, 91–96

Firebug add-on, 174, 209, 335
folksonomy tagging, 146
footer

styling, 173–174
theming, 314–316

forums
completing Primary menu, 81–82
setting up, 78–79
starting affinity group with own, 289–292
usability issues, 374

FTP
downloading Drupal using, 27
shifting files to test site for Drupal 6 upgrade,

189
uploading files with, 240–241

Full HTML link, 221
future creep, 13–14

G
Garland theme

creating additional regions with, 166–168
specifying structure with, 161–165

geshi filtering, 197
getting started, 374
Global Redirect module

in Acquia Drupal website, 423
committing to SVN repository, 99
configuring, 97–98
updating, 112–117

groups. See also Organic Groups module
affinity, 118–125, 131–136
creating role-specific Navigation menu,

143–144

H
hacking, Drupal core, 57
handler, autocomplete function, 342, 344–345
header, 305–306, 309–310
Help

Advanced Help module. See Advanced Help
module, Views 2

usability of, 375, 388–391
Hierarchical Select module, 345–347
high-level class diagrams, 127
home directory, upgrading to Drupal 6, 189
Home page

configuring, 77–78
losing group posts in upgrade to Drupal 6,

222–225
Hourieh, Ayman, 337
.htaccess file, 27, 191
HTML, Full, 221
HTML files

in AHAH, 324–325
formatting text area, 149
implementing help system, 388–389

HTTP, in AHAH, 324–325

I
importing

codebase into repository, 62–63
content types, 71
Drupal 7 enhancements, 367

Inception Phase
defined, 10
for example in this book, 15

437

Inception Phase (continued)

Inception Phase (continued)
getting what you want, 13–14
getting with program, 4–7
identifying users, 8–9
information architecture and, 15
mapping business vision/scope, 7–8
organizing iterations, 10–12
turning over project to client, 14
usability, 13
user stories and roles, 9–10

incremental approach, 12
.info file, 206
.ini file, 388
initial environment, creating

overview of, 18–19
updating Drupal release, 109–110
updating modules, 112–117

initial environment, reviewing, 53–61
housekeeping svnrepository and trac

instance, 55–56
main directory structure for Drupal,

57–58
overview of, 53–55
using phpMyAdmin, 60–61
using version control, 59
what to do about database, 60

initial theming, 303–305
input formats

text area, 149
usability issues, 373

installation
Acquia Drupal website. See Acquia Drupal
Drupal 5.x, as one click script, 19–22
Drupal 5.x, manually. See Drupal 5.x,

installing
Drupal 6.x. See Drupal 6.x, installing
Drupal 7, 377–378

installation profiles
defined, 392
example of, 392–395
leveraging Advanced Help module,

385–391
installation profiles, writing, 395–410

abstracting out views, 397–398
caveats, 410
copying in modules and theme, 396

creating Drupal installation tarball, 410
exporting website application views, 398
preparing ./profile directory, 399–410
starting with clean Drupal installation tarball,

395–396
views include file, 398–399

installation tarball, 191
creating, 410
shifting files to test site for Drupal 6 upgrade,

190
writing installation profile with clean, 395–396

Installation Wizard, Drupal 6.x, 241–244
intranet.module, 343
inventory, modules, 200–201, 215
iterations

grouping into phases, 10–12, 94
making user list available, 283–287
making view to list user stories, 281–283
planning process flow, 5–6
sorting user stories by, 280

iterative approach, 12

J
JavaScript, 329
Join! menu item, 43, 45–46, 48, 81–82
jQuery, 323–362

accessing DOM with CSS, 325–327
accessing DOM with JavaScript, 327–329
anatomy of, 329–335
creating dependent autocomplete fields,

342–345
Drupal 5.x uses of other libraries and, 336–338
Drupal 6 enhancements, 354–361, 365
plug-ins, 335–336
pop-up calendar, 262
reusing collapsible widget, 339–342
Rich Internet Applications framework, 323–325
Update module, 338–339
using Hierarchical Select, 345–347
validation, 347–354

jQuery.noConflict(), 337–338
Jscalendar module, jstools, 337
jstools module, 336–337

438

In
de

xnumbering user stories

L
language

creating bilingual site in Drupal 6.x, 248–252
Drupal 6 enhancements, 366
finding common, 70
implementing Client workflow, 261–268
specifying for Drupal 6.x, 241–244

Launch milestone, 91–96, 281–282
layout, initial theming, 304–305
left sidebar regions, theming, 311–313
Leveraging Drupal website, 125–127
A List Apart magazine, 157
logging

Drupal 6 enhancements, 366
testing upgraded 5.x version, 199–200

login, to test site, 83–84
logo.png, 305–306, 308

M
machine-readable field names

creating acceptance text content type, 133
creating business objects, 41–43, 253–254
creating content type, 71
creating user story content type, 133

magazines, creating, 73–78
main content area, theming, 313–314
main process workflow diagram, 4–5, 239
Managing Software Development with Trac and

Subversion (Murphy), 55
mapping, application scope and domain,

244–245
meme maps, 7–8
MENU_CALLBACK path (URI), autocomplete

function, 342–343
milestones

Beta. See Beta milestone
Final release. See Final release milestone
Launch, 91–96, 281–282
Prototype. See Prototype milestone
user story implementation using Trac, 90–91

modules
Acquia Drupal website, 422–423
Drupal 7 features, 367, 371, 376–377

enabling with installation profiles. See
installation profiles

installing and enabling in Drupal 6.x, 247–248
updating, 111–117

modules, 5.x to 6 upgrade
creating inventory, 200–201, 215
disabling contributed, 202
enabling, 205–206
physically replacing Drupal 5 contributed, 216
preparatory steps before replacing, 216
updating to latest version available, 191–199

Modules subdirectory, 34
Mollom service, Acquia integration with,

427–429
multi-tier architecture, abstraction and, 157
My groups view, escaped PHP in, 219–222
mysql command, phpMyAdmin, 61
MySQL database

creating for Drupal installation, 23–27
developing minimalist On-Line Literary

Workshop, 378
installing Acquia Drupal, 414
installing Drupal manually, 22

MySQL Database Wizard, CPanel, 23
mysqladmin command, 60

N
naming conventions

applying subtheme to Quotation block,
181–182

implementing polymorphism through, 161, 166
installation tarball, 396
styles and standards document for, 104
user admin, 31

navigation, setting up client, 261–268
Navigation menu blocks, 142–145
Node Title module, 377
Nodequeue module, 168–172
nodereference autocomplete fields, jQuery,

342–345
nodes

Acquia Marina theme settings, 426
Drupal 7 enhancements, 367
implementing acceptance test, 280–281

numbering user stories, 118

439

og_ghp_ron view

O
og_ghp_ron view

enabling Devel module, 233
implementing Document Case, 138–139
losing group posts in upgrade to Drupal 6,

223–225
views-sorting tweak, 141

og_ghp_table view
enabling Devel module, 233
implementing Document Case, 139–140
losing group posts in upgrade to Drupal 6,

223–224
views-sorting tweak, 141

online references
Acquia Drupal homepage, 412
Acquia Partner program, 430
Agile Modeling, 7
automated testing, 117
Business Models, 7
CMMI, 11
converting 5.x themes to 6.x, 206
core modules, 74–75
Devel module, 231
Drupal coding standards, 104
Drupal Documentation Handbooks, 19
Drupal Dojo Project, 19
Extreme Programming, 6
finding common language, 70
first user story, 87
hacking Drupal core, 57
hiring Drupal site developer, 104
installing Drupal manually, 22
jQuery, 330
jQuery plug-ins, 335
jstools module, 336
main directory structure for SVN repository,

61–62
meme maps, 7–8
Open Unified Process, 10–11
prototyping, 31
Rational Unified Process, 10–11
Standard Waterfall Model, 12
subversion (SVN), 54
Trac hosting service, 54
upgrading to Drupal 6, 187

version control systems, 54
Views module, 137
VPS or dedicated server, 64–66
Zen theme, 179

onload(), implementing with jQuery,
331–332

Open Unified Process, 10–11, 70
Organic Groups module

abstracting out views, 397
adding forum topic, 291
controlling access to site content, 119–123
creating dev affinity group, 133
customizing layout of group home page,

137–140
solving 5.x to 6 upgrade problems with,

218–226
OSWD (Open Source Web Design), 304
outlining, 76–77

P
Page display, 260, 284
pages, vs. articles, 375
page.tpl.php file

converting 5.x themes to 6.x, 208
editing, 306

passwords
admin, installing Drupal 5.x in one-click, 21–22
admin directory listing for, 56
creating first user, 31
creating MySQL database using CPanel, 23–24
creating MySQL database using phpMyAdmin,

25
creating Workshop Leader role, 48
creating Workshop Member role, 50
deploying to test site, 84
Drupal 7 security features, 370
implementing Author Info block for blogs, 272
implementing Registration workflow, 260, 269
installing Drupal 6, 241, 243–244
making sure root user has, 27
validating in Drupal 6.x, 243–244

Pathauto module
committing to SVN repository, 99
configuring, 97–98
generating SEO-friendly paths with, 93

440

In
de

xPublisher, implementing user stories

showing growing maturity of Drupal, 377
updating, 112–117

performance gains, Drupal 6 and 7, 366–367
permissions. See also access rules

blogs, 79
business objects, 254–255
comments for content types, 72–73
converting 5.x themes to 6.x, 210
database/user for Drupal 6.x installation, 241
enabling Devel module, 231
installing Advanced Help module, 228
modules in Drupal 6.x, 248
Mollom service, 428
Publisher role, 74, 302–303
Registration workflow, 257–258
roles, 31–32
Workshop Leader role, 49

phases, iteration, 6, 10–12, 94
PHP 5, Drupal 7, 372
PHP filter module, escaped, 219–222
PhpMyAdmin

creating database/user for Drupal 6.x
installation, 241

creating MySQL database with, 24–25
dumping database using, 60–61, 81–82
shifting files to test site for Drupal 6 upgrade,

189
PHPTemplate theme engine

creating additional regions, 165–168
defined, 160
enabling block in new region, 172–173
specifying structure, 161, 163

Places menu
creating, 144–145
creating role-specific Navigation menu, 144
enabling for publishers, 292–298
making options appear in, 291
publisher managing publication, 298–301

plug-in, jQuery Validation
Drupal 5.x thread, 347–349
Drupal 6 thread, 349–350
working with, 353–354

plug-ins, jQuery, 335–336
.PO (individual language) files, 248
polymorphism

creating additional regions using, 166–168

implementing for Drupal theming, 161
PostgreSQL support, Drupal 6, 366
prefixes, machine-readable field names, 41–43
presentation, separation of content from,

157–158
Primary menu

completing, 80–81
creating role-specific Navigation menu, 142–144
implementing Registration workflow, 258
theming, 310–311

Print module, Acquia Drupal, 423
prioritizing, user stories, 5
private messages

publisher broadcasting call for pieces to be
submitted, 301–303

sending to client, 129–131
./profile directory, installation profiles, 392,

399–410
Profiles, implementing Author Info block, 319
Project Document, creating, 135
prototype and script.aculo.us, 337
Prototype milestone

completion of, 155
project planning using Trac Roadmap, 91–96
running acceptance tests for, 117–126

Prototype Windows Class, 337
prototypes, building on initial, 69–85

committing to repository and tagging, 81–83
completing Primary menu, 80–81
creating literary_piece content type, 71–72
creating magazines and books, 73–78
deploying to test site, 83–85
enabling comments for literary_piece content

type, 72–73
overview of, 69–70
setting up blogs, 79–80
setting up forums, 78–79

prototypes, whipping up initial
finishing up Elaboration Phase, 117–127
implementing business objects. See business

objects
implementing roles, 31–33
overview of, 31

publications
completing Primary menu, 81–82
creating online books and magazines, 73–78

441

Publisher role

Publisher, implementing user stories
broadcast call for pieces to be submitted,

301–303
browsing public content, 292–298
making view to list user stories, 282
managing publication, 298–301
selecting content, 298

Publisher role
creating magazines and books, 73–75
defined, 9
user stories for, 10

putty, 83–84

Q
Quotations block, theming, 178–183, 311–313
quote content type, theming, 182, 332–335
quote regions, 168–172
quotebello.js, 334, 336
Quotes module, 168

R
Random Quotation block, theming, 178–183
Rational Unified Process, IBM, 10–11, 70
Recent Blog Posts block, 320
regions

adding quote, 168–171
creating additional, 165–168
enabling block in new, 172–173
populating quote, 171–172
preview feature for blocks, 374

registration, Acquia Drupal website, 417–421
Registration workflow

Drupal 6.x installation, 256–261
Team Leader, 268–270

registry, Drupal 7 features, 371
Requirements baseline, 11
Resource Repository, 18–19
RIA (Rich Internet Application) framework,

323–325, 336–339
Risk list, 104
Roadmap menu, 90–95
robustness diagrams

acceptance tests for user stories, 119–120
for Architectural baseline, 126–127
for user stories, 102–103

roles
creating in Drupal 6.x, 245–247
creating Navigation menu blocks, 142–144
getting initial feedback from client, 85
identifying in main process workflow, 4–5
implementing, 31–33
project team, 103–104
for users, 8–9

root directory
Drupal document, 57–58
installing Drupal into, 28

RSS feed, 272–278

S
scope, mapping application, 244–245
script.aculo.us, 337–338
scrolling, usability issues, 376
search, Drupal 7, 370
security

Drupal 7 features, 370
immediately installing new releases, 232–233

Send Message link, 302–303
SEO friendly paths

acceptance testing, 117–118, 281
Acquia Marina theme, 426
creating themes, 13
generating for first iteration, 93
implementing, 95–99
running Drupal Install Wizard, 243

Separation of Concerns, 157–158, 178
”Separation: The Web Designer’s Dilemma”

(Cohen), 157–158
Service Links module, 318
settings.php file, 66–67, 240
Simple Test Framework for Drupal, 369
simpletest unit tester, 117
sites directory

completing repository, 82–83
version control using, 58, 59

./sites/default/settings.php
switching to using CVS on existing Drupal

installation, 192
updating Drupal core, 202–203, 205

sorting, views, 140–141
spam, Mollom service for stopping, 427

442

In
de

xTinyMCE WYSIWYG Editor

Standard Waterfall Model, 12
standards, setting, 104
Status Report link, 96–97
structure, specifying, 161–165
style, 104, 173–174
style.css sheet, 173
subscription, Acquia Drupal website, 412–413
subthemes, 179–181
Subversion UI Shootout (Jones), 61
superuse admin, 31
support, Acquia Drupal, 421
SVN (subversion) repository

committing work to, 99–100
completing, 81–82
deploying to test site, 84
housekeeping, 55–56
initial import of codebase into, 62–63
main directory structure for, 61–62
replacing Drupal 5 contributed modules for

upgrade, 216–217
syncing work with, 174–177
updating modules in, 114, 116
version control with, 53–55

svn export command, 396
.svn subdirs, 396
synchronization, repository/test site, 174–178

T
table view, Client workflow, 264
Tabs module, jstools, 337
tag clouds, 153
Tagadelic module, 146, 149–150, 153
taxonomy

making view to list user stories using, 281–283
organizing content, 147
understanding, 374
using Hierarchical Select, 346

team
documentation, 376
organizing project, 103–104

teasers, usability issues, 374, 375
test site

creating initial environment for, 18–19
deploying to, 83–85, 100
getting up and running, 63–69

syncing work with, 178
testing upgraded 5.x version, 199–200
upgrading to Drupal 6 by shifting over to,

188–191, 214
testing. See also acceptance tests

demystifying, 117
Drupal 7 emphasis on, 368–369
Drupal 7 features, 370
importance of usability, 13–14
user story implementation, 101
workflow for first prototype, 47–48

text
filters, 149
implementing Client workflow, 261–268

themable functions, 158
Theme Developer, Devel module, 233
Themes subdirectory, 34
theming, 155–183

additional regions, 165–168
block in new region, 172–173
clearing theme registry when adding/removing

templates, 230
Drupal 5.x to 6 upgrade, 201–202, 206–210
Drupal 6 enhancements, 366
Drupal 7 enhancements, 371
dynamic content, 160–161
footer, 314–316
initial, 303–305
installation profiles, 396
with jQuery, 332–333
main content area, 313–314
on-line Help icon for, 389–391
overview of, 156–160
Primary menu, 310–311
quotations block and left sidebar regions,

311–313
quote region, 168–171
quote region with custom block, 171–172
reusing Zen, 178–183
separation of concerns and, 178
structure of, 161–165
style of, 173–174
syncing with repository and test site, 174–178
using Acquia Drupal for, 426–427

third-party modules, 75
TinyMCE WYSIWYG Editor, 196–197

443

Token module

Token module, 97–99, 376–377
Top Notch Themes, 426
Trac

creating role-specific Navigation menu blocks,
143

housekeeping SVN repository and, 55–56
user story implementation using, 90–95
verifying SVN directory structure using, 62
version control and issue tracking with, 54–55

Tracker module, 145
Transition phase

defined, 11
organizing groups of iterations into, 94
responsibilities of client, 14

Translation workflow
Client, 261–268
Team Leader, 270–272

translations
creating business objects, 252–256
making site bilingual in Drupal 6.x, 248–252

Translator Team Leader
Registration workflow, 257–261
workflow, 268–272
workflow for Drupal 6.x installation, 272–278

triggers, Registration workflow, 259

U
Ubiquity extensions, Firefox, 26, 378
Ubuntu

.bash_aliases file, 114
creating Developer Workstation, 18–19
deploying to test site, 83
developing minimalist version in Drupal 7, 378
getting header in place, 305
installing Drupal 6, 240
settings.php file, 67
using command line, 26

UI (user interface), Drupal 5.x, and jQuery, 338
unit testing, 13–14, 117–118
Update module, jQuery, 338–339, 345–347
update script, running, 217–218
Update Status module

disabling before replacing modules with 6.x
counterparts, 216

Drupal 6 enhancements, 365

updating to latest 5.x version available,
195–199

update.php, 192, 198
updates

Drupal release, 110–111
installing Acquia Drupal, 423–425
module, 111–112

upgrading to Drupal 6. See Drupal 6, upgrading
to

uploading files, 240–241, 338
URLs

adding quote region, 169
admin directory listing for, 56
implementing Clean URLs. See Clean URLs
understanding dynamic content, 160–161

usability
Drupal 6 features, 366
Drupal 7 features, 367, 370, 372–373
importance of, 13
studying Drupal, 373–374
Usability Group issues, 375–376

usability sprints, 373, 375
use case, defined, 102
Use Case Driven Object Modeling with UML

(Rosenberg and Stephens), 70
user dev

creating, 31–33
creating dev affinity group, 132–136
enabling comments, 72–73
implementing business objects, 33, 38
testing workflow, 47

User module, Drupal 7, 371
user stories

acceptance tests for. See acceptance tests
accessing new views with block menus, 288
creating dev affinity group, 132–134
enabling blogs, 317
getting initial feedback from client, 85
identifying in main process workflow, 4–5
implementing. See Agile modeling, implementing

user stories
listing for previously identified roles, 9–10
making user list available, 283–287
making view to list, 281–283
viewing and sorting by iteration, 280

User Stories Applied (Cohn), 4, 87

444

In
de

xwaterfall model approach

user stories, finishing with client, 87–105
approval/rejection of membership applications,

88
committing to repository, 99–100
deploying to test site, 100–101
developing, 95–99
Elaboration phase cleanup, 104
first user story, 87
organizing team, 103–104
overview of, 87
planning project, 89–90
testing, 101
using architectural baseline, 89–90, 101–103
using Trac, 90–95

usernames
admin directory listing for, 56
Author Info block for blogs, 272
creating MySQL database using CPanel, 23–24
creating MySQL database using phpMyAdmin,

25
deploying to test site, 84
for first user, 31
installing Drupal 5.x in one-click, 21–22
installing Drupal 6, 241
Registration workflow, 260, 269
Workshop Leader role, 48
Workshop Member role, 50

users
creating accounts, 260–261
creating first, 31
creating for Drupal 6 installation, 241
creating roles in Drupal 6, 245–247
designing website for, 8–9

V
validation, jQuery, 347–354

creating litworkshop.info and
litworkshop.module, 351–353

Drupal 5.x thread, 347–349
Drupal 6 thread, 349–350
getting plug-in to function, 353–354

variables, of structural elements, 165
version control

for content assets, 58
for Drupal database, 60

initial import of codebase into repository,
62–63

overview of, 54–55
problems and solutions using, 59

views
5.x to 6 upgrades, getting back old, 226–227
access with block menu, 288
of all quotes on page, 169–171
escaped PHP in My groups, 219–222
installation profiles, 397–399
making user list available, 283–287
sorting and tweaking, 140–141
sorting user stories by iteration, 280
user stories, 280–283

Views, browsing and filtering, 145–153
Beta milestone example, 146–148
creating view, 150–152
filtered HTML formatting in text area, 149
overview of, 145–146
Tagadelic module, 149–150
using categories and tag clouds, 153
using exposed filters, 152–153

Views 2 module
Advanced Help format, 131, 385–391
defining, 131
integtration with jQuery widgets, 354
Nodequeue module as part of, 168

Views module
creating view, jQuery alarm module for Drupal

6.x, 354–358
help index window, 386–387
implementing Document Case, 137–140
implementing Registration workflow, 259
installing and enabling in Drupal 6.x, 247–248
overview of, 137
sorting and tweaking views, 140–141

views.help.ini file, 386–387
VPS (virtual private server), 64–67

W
warnings

Administration messages, 96–97
Content Construction Kit installation, 36
logging into test site using putty, 83–84

waterfall model approach, 12

445

Webmaster

Webmaster
Agile approach to Drupal development, 282
defined, 9
in Drupal 7 release, 367–368
user stories for, 10

Website Developer Patterns, 15
Welcome screen, usability of, 375
wget command, 28, 36, 196
white screen of death (WSOD), finding error

messages in, 197–199
Wordpress, 317
workflow, 241

creating Client’s, 261–268
creating Registration, 256–261
creating Translator Team Leader, 268–272
creating Translator’s, 272–278
main process, 4–7, 239
testing Workshop Leader role, 49–50

Workshop Leader
acceptance testing user stories, 118–127
approval/rejection of membership applications,

88, 91
creating user as, 48–50
defined, 9
making view to list user stories, 282
user stories for, 9
working on architectural baseline, 102

Workshop Member, 282
creating navigation block for, 143
defined, 9
logging in as, 50

setting permissions for role of, 72–73
starting affinity group with its own forums,

289–292
user stories for, 9

writeable filesystem
developing minimalist On-Line Literary

Workshop, 380
installing Drupal manually, 29
troubleshooting CCK installation, 37
updating to latest 5.x version available,

193–194
uploading files creating, 241
working with Administration warning messages,

96–97
WSOD (white screen of death), finding error

messages in, 197–199
WYSIWYG editor

Drupal 7 enhancements, 367
enabling, 375
usability issues, 373

X
XHR (XMLHttpRequest), 323

Z
Zen Garden example, 157
Zen theme

creating subtheme based on, 178–180
upgrading to Drupal 6.x, 229–230

446

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 450
 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

Leveraging Drupal®

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox guides are crafted to make learning programming languages and technologies easier than you think. Written by
programmers for programmers, they provide a structured, tutorial format that will guide you through all the techniques involved.

Recommended
Computer Book

Categories

Internet

Web Page Design

ISBN: 978-0-470-41087-5

As an open source, community-based content management system
and web site application development framework, Drupal allows
you to create interactive, media-based, database-driven web sites
that become a part of everyday activities and communications.
This unique book is the first of its kind to tackle the challenging
task of leveraging Drupal to get a site done right and make that site
work for you, based on industry-wide software development best
practices.

Within these pages, you will gain insight into how to work with any
release of Drupal, approach your project, establish a development
environment, plan for deployment, and avoid pitfalls along the way.
A real-world example of a web site application based on Drupal—an
online Literary Workshop—is used throughout the book, and it walks
you through the entire development lifecycle. You’ll learn how to
bring your web site into the exciting Drupal mainstream, customize
Drupal for your specific needs, and even make “non-Drupal” looking
sites. With this hands-on guide, you’ll discover how to use Drupal to
efficiently publish, manage, and organize a wide variety of content
on your web site.

What you will learn from this book
● Best practices to optimize the way you approach

development projects
● Methods for setting up a development environment

using version control and issue tracking tools
● How the Drupal theming system works and how it

separates content from presentation and style
● Techniques for upgrading and deploying the online

Literary Workshop
● The future of Drupal and how it might be developed

and used

Who this book is for
This book is for Drupal users of all levels of expertise
who are looking to put together a sophisticated web
application.

Leveraging D
rupal

®

Kane

spine=.96"

Updates, source code, and Wrox technical support at www.wrox.com

Leveraging
Drupal

®

Getting Your Site Done Right

Victor Kane

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

